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Abstract. New identities are presented relating arbitrary order partial derivativeéwof) and
u'(x',t") for the general point transformatiori = P(x,t,u),t = Q(x,t,u), u' = R(x,t,u).

These identities are used to study the nature of those point transformations which preserve the
general form of a wide class of-& 1 partial differential equations. These results facilitate the
search for point symmetries, both discrete and continuous (Lie), and assist the search for point
transformations which reduce equations to canonical, but similar, form. A simple test for the
existence of hodograph-type transformations between equations of similar form is given.

1. Introduction

Probably the most useful point transformations of partial differential equations (PDESs) are
those which form a continuous (Lie) group of transformations, each member of which leaves
an equation invariant. Symmetries of this equation are then revealed, perhaps suggesting
links with equations studied in a different context, perhaps enabling new solutions to be
found directly or via similarity reductions.

The classical method of finding these transformations is first to find infinitesimal
transformations, with the benefit of linearization, and then to extend these to groups of
finite transformations. However, this method may well overlook discrete symmetries such
as simple reflection or hodograph transformations. Also infinitesimal transformations are
not appropriate for directly linking a PDE with an equation of a different form. This is
useful, for example, when converting equations to a canonical form on which an established
theory can be called.

An example of a discrete symmetry is given by Kingston and Sophocleous [1] who found
that the reciprocal transformation (double application gives the identity transformation)
x' = x/t,t' = 1/t,u’ = —(ut — x) leaves the Burger-type equatian + uu, +
(f@) — f(A/))ux, = 0 invariant, a symmetry additional to the Lie point symmetries
obtained from the classical approach. Further, this reciprocal transformation, modified to
x = ix/(at),t = 1/(@?t),u’ = —ia(ut — x), provides the missing link, postulated by
Doyle and Englefield [2], betweems, + uu, + €¥*'u,, = 0 andu/, +u'v’, +€&"'u’, , =0
which they had shown to possess the same Lie algebras.

Ordinary differential equations furnish other examples of when Lie symmetries obtained
by the classical method only provide a subgroup of the full point symmetry group. Olver
[3, p184], cites the example,, = xu + tan(u,) which has no continuous symmetry
yet possesses the discrete reflection symmetry> —u. A more interesting example
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1598 J G Kingston and C Sophocleous

(Reid et al [4], Englefield [5]) is uxx = u./x + 4u?/x® which admits the scaling
symmetry groupx’ = ax,u’ = au, in addition to a cyclic group of order 4 generated
by x' = x', 0 = —ux'"1 — 1xi,

Discrete point transformations between equations of similar form have also been used by
Chen [6] to find Backlund transformations. In the AKNS scheme the linear representation
Wy
Wy
produce soliton equations, for example the KdV equatipi- u,,, + 12uu, = 0. The
linear representation also shows that W;/ W, satisfies two Riccati equations, one for
each independent variabteandr. If u (see above equation) is eliminated from these Riccati
equations, the resulting equation folis v, + vy, — 24vv, + 24kvv, = 0. Chen showed
how the simple reflectiom — —v, which leads to a PDE of a similar formt (+~ —k) can
be used to derive the classi@&lund transformation for the KdV equation. However, this
approach is probably more for interest than for efficiency of method.

Changing PDEs to canonical forms is another application of discrete point
transformations. A model of nonlinear waves in a weakly inhomogeneous plasma was
given by Zakharov [7] as the variable coefficient cubic Sclimger equation

of nonlinear equations has eigenfunctign = , say, which when eliminated can

i), +uls .+ 2uu* — 2ax'u’ = 0.

Chen and Liu [8] used the point transformations

!’

x' = x — 2ar? t

=t u' = uexp[—2ioaxt + %iazts]
to convert the above equation to the cubic $dimger equation
i, + oy + 2uu* = 0.
A second example is the conversion of the cylindrically symmetric nonlinear diffusion
equation

1
-1
uy, = ;(x/u/ Uy

to the one-dimensional equation
-1
Uy = (u Uy)y.

King [9] achieved this with the point transformatian = e*,+' =, u’ = e %u and went
on, [10], to generalize and exploit this.

The above reasons and examples show that there is merit in studying point
transformations directly in finite form with the ultimate dual goals of finding the complete
set of point transformation symmetries of PDEs and discovering new links between different
equations.

The aim of this paper is first to present results concerning the relation of the transformed
partial derivatives to the original partial derivatives and secondly to exploit these results to
reduce the general range of point transformations connecting PDEs belonging to restricted
classes of equations.

In section 2 we explain the notation and summarize the basic theory on which the work
herein is based.

Relationships between partial derivatives are considerably more cumbersome than
the corresponding relationships for infinitesimal transformations which themselves expand
rapidly with increasing order. However several manageable results are presented in section 3
as lemmas 3.1-3.3 and corollaries 3.1-3.3 (to lemma 3.1). The proofs are given in
appendix A. Section 3 finishes with the tentative unproven conjecture 3.1.
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The results of section 3 help us achieve the second aim of the paper which is to discover
the nature of point transformations connecting PDEs belonging to given classes of equations.
Thus, in section 4 we first look at PDEs with one partial derivativa @f, 7) of any order,
possibly mixed, related to lower-order derivativesugfu itself, andx and¢. That brief
study is summarized by theorem 4.1, which is followed by a simple test for the existence
of hodograph-type transformations between equations of certain types. Subsequently, we
consider three classes of equationsHlfrepresents a function of, 7, u and derivatives of
u we discuss evolution equatioms = H and also the two classes, = H andu,, = H.

The results are summarized in theorems 4.2a, b, 4.3a—c and 4.4a—c.

2. Point transformations: Notation and basic theory

We consider the point transformation
x'=P(x,t,u) ' =0, t,u) u' = R(x,t,u) (2.1)
relatingx, ¢, u(x, t) andx’, ', u’(x’, ¢'), and assume that this is non-degenerate in the sense
that the Jacobian
(P, O, R)
== 740 2.2
d(x,t,u) 7 (2:2)
and also that
_ (P (x,t,u(x,1)), Qx, 1, ux,1))) £0. 2.3)
d(x,1)

In (2.3) P and Q are expressed as functionsxofinds whereas in (2.2P, Q andR are to
be regarded as functions of the independent variablesu.
The derivatives ofi(x, r) andu’(x’, t') will be denoted by
ai+_iu 8i+ju/
Ujj = ——5 l/l; = —.
axioti T axiori
If W is a function ofx, ¢, u and the derivatives of, the total derivatives of with
respect tax and: will be denoted by

Uy =V, + Z Zui+1j$ (2.5)
ij

ow
Yr =V, il —— 2.6
r Z+ZZ“/+13L,U, (2.6)

where the double summations are to be taken over the valuesmd j which cover all
derivativesu;; occurring inWw.
With this notations may be expressed as

AP, 0 _
—m—PxQT PrQx

= - ulO(PtQu - Pth) - uOl(Pu Qx - PxQu) + (Pth - Pth)~ (27)
Also, under the point transformation (2.1),

(S)= (B oy (@) (@)=2(% 2)E)  es

and
AW = Wyds + Wrdh = = (Wy \pT)< Qr ‘PT)(dx') 2.9)
8 —-0x Px

8

(2.4)
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L

Hence, takingl' = u;; ;. u;_,; respectively, gives

uj; =8 H(Px(uj;_y)r — Pr(uj;_yx)  j=1i>0 (2.10)

ul; =8"NQrj_1)x — OxWj_1,)1) i>1j>0. (2.11)
Also,

ugo=u = R. (2.12)

Equations (2.10)—(2.12) furnish recurrence relations which engbléeo be expressed

in terms ofx, ¢, u and the derivatives af for anyi > 0, j > 0. The factors—* makes the
expressions for;; grow withi and j in a very cumbersome manner.
In the case of infinitesimal Lie point transformations in which

P(x,t,u) = x + eP*(x,t,u) + O(€?)
O(x,t,u) =1+ €Q*(x,t,u) + O (2.13)
R(x,t,u) = u 4 eR*(x, 1, u) + O(?)

the forms ofJ and$ in (2.2) and (2.3) simplify to

J=14€(P!+ Q] +R)) (2.19)
§=1+€(P;+ Q}) (2.15)

to the first order ok. The recurrence relations corresponding to (2.10)—(2.12) are

wi; = (uy_)r — €[Pruj;_)x + 07 (uj;_1r] j=z1i>0 (2.16)
’/l;j = (”;_1j)X - G[P;(Mg_lj)x + Q;(”;_lj)T] i>21j=20 (2.17)
woy =+ €R* (2.18)

to the first order ine. These of course lead to considerably less cumbersome forms of
than those obtained from (2.10)—(2.12).

3. Properties of the transformations

Under the point transformation (2.1) each derivative 5tx’,¢’), that is u;,i >

0,j > 0, may be expressed, via the recurrence relations (2.10)—(2.12), as a function of
x,t,u and the derivatives ofi. A number of results concerning the functional form

of u;,q(x,t,u,...,uij,...) are presented in this section. These results concern point
transformations with, as yet, no reference to PDEs. In section 4, the results of section 3
are necessary to study the nature of point transformations which perform specific changes
to PDEs. Of particular interest, for example, are the casewahange which correspond

to symmetries of the equations. The proofs of the results are generally inductive and use
the recurrence relations (2.10)—(2.12). They have been relegated to appendix A.

Lemma 3.1If x' = P(x,t,u),t' = Q(x,t,u),u’ = R(x,t,u)

Xn:zi% = i (=1)?(Qx — zQ7)"(Px — zPr)?Js P11 n=0

3.1
8u,-j Ru n=20 ( )

i=0

wherei+ j=p+g=n2>0.
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As an illustrative example consider the point transformation

X =ul =t u = xu"t
which is an element of a cyclic group of finite transformations of order 3. Direct calculation
gives
Px = —u"%u, Pr = —u"2u, 0Ox=0 or=1 J=u"®

§ = —ufzux
and application of lemma 3.1 fgr = 0 andg = 2 produces

! ! I
20U, dup, | dug, _

-1 -3,.2.2 2
—u Uy (27ug, — 2zuiouol + Uig)
31420 Bull 31402

using the numeric subscript notation.
Comparing coefficients af?, z and z° now leads to the following results

ou’,,
= 2u71u;2u, 1 —

ouy,
These results may be readily checked against the actual expressigf), for

/ /
oy, 3,2 iy,

-1
X t °

Oy .

Ollyy
’ -1 -3,.2 2
Wypy = —U U (Uil — 2U Uity + USU).

A number of useful results are contained in lemma 3.1 and are described in the following
four corollaries. First the coefficient af in (3.1) gives the following.

Corollary 3.1.

au;)q . min{i, p} p q s i s 1

Moy (1) (9, ) oot @
u s=max0, p—j}

wherei +j=p+q > 1.
The coefficient ofz? in lemma 3.1, or setting = p and j = ¢ in corollary 3.1, gives
Corollary 3.2.

ou’ P
_ra_ p q q—p+s pp—s AP—S s ys—p—q—1
I pg Z (s ) <P - 5) Px ProOx Cr/o (33)

s=max0,p—q}
wherep + ¢ > 1.

The coefficient of;” andz° in lemma 3.1 give, respectively:

Corollary 3.3.
ou’
— = (-)IPIQFISTTE ptg>1 (3.4)
O p+q0
ou’
— = (=DPPYORISTTE ptg =1 (3.5)
dutop+q

For point transformations (2.1) restricted#to= Q(¢), lemma 3.1 becomes:
Corollary 3.4.1f Q(x, t,u) is independent ot andu,

WV
B

ou’ -1 p+i < q > P[H—q—iPi—p pJ8_p_q_l ;
= i) e e (3.6)
! 0 i<p

wherei + j=p+q > 1.
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Lemma 3.2If x' = P(x,t,u),t' = Q(x,t,u),u’ = R(x, t,u) then
8m+n

u/
m—];lo = (_l)ncmn (VlO[QX + m,B QT)aiminil (37)
dudug,
8m+n /
0 (1 C,p(nar Py + mp Pp)S (3.8)
dupdug,

wherem +n > 1, C,,, = (m +n — 1)! o™ 1p""1J, depends only on, + andu and where
o= PtQu - Pqu‘ and/s = PxQu - PuQx-

When using lemma 3.2 for given values mfandn the formulae should be simplified
beforethe particular forms o& and g, etc, are inserted. For example, whee= 0, 8 may
be cancelled. This pre-empts a potential difficulty of dealing vfittt when g = 0. We
note that, whem: +n = 1, lemma 3.2 becomes lemma 3.1, corollary 3.3 with ¢ = 1.

As an example we consider again the cyclic transformatioa =, ¢t =, u’ = xu™1.
Thusae = 42,8 =0 andCy, = (m +n — Du=2""18"-1, We note that8 has been
retained inC,,, for cases where cancellation gfoccurs. Then, for example, equation (3.8)
of lemma 3.2 gives

0 n>1Ln+m>1
am+nu61 1 1
W: u (—M]_o) " n:l,m}O
U109%01 -1 —m—1 _
u~(—u1o) uo1 n=0m>1

which is consistent with the relation

ro_ -1 -1
Uy = —U U, U

Lemma 3.3If x" = P(x),1"' = Q(1),u" = R(x,,u) then
o _ (f> (?)Px_"Qr_"Rw itk=p j+l=gq
0 i+k>porj+i>gq.

3.9
E)uijaukl ( )

The previous example of a cyclic transformation is not applicable here since for example,
x’ = u~t is not of the formP(x). Instead we consider the reciprocal (cyclic of order 2)
transformation

x' =x =11 u' = xu"?t
Here we have
P =1 0, = —t72 J=xt"%u? §=—172

so that lemma 3.3 gives, wheént-k = p andj +1 = ¢,

0%u) P\(4 3
— = (=D " ") 2123,
3ul~j3ukl L J

A particular case is

ou’
2 _ 42,8

8u118u10

which is consistent with the full expression fe§, (or u’...,.),

X

/
x'x't!

u = 12u" (cuPuyyy — 2xuuyy — Axuu g, + 2uu,, + 6xufu, —Auuu;).
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The above results all apply to finite transformations. However, since infinitesimal
transformations have such importance in the study of PDEs, the corresponding versions
of the above lemmas are given below.

For the infinitesimal transformation (2.13) lemma 3.1 condenses to

ou

’
pq

= —epQy p>1 (3.10)
p-1q+1
au;,q
——— = —€qP; g>1 (3.11)
dp+1q-1
8u;,q
au—=1—e((p+1)P§+(q+1)Q’}—Pf—Q?‘—RZ) ptqg=>1 (3.12)
rq
a !
S0 _ 9 4 ¢R* (3.13)
duqo
CI7o o .
WZO i+j=p+g>0 G, N#pP-Lq+1)
1
G.D#pP+Lqg-1 @, j)# (p.q) (3.14)
to ordere. In the case of lemma 3.2, equation (3.7) simplifies to
32 / 82 /
B0 _ _gepr 20— _ o (3.15)
81410 8u103u01
ou, ou
0 _ 1 e@P;+ QL — PF— QF — RY) "0 _ ot (3.16)
du1g duor
to ordere. For all other derivatives
aern /
— u];lo — 0(62). (317)
oupdug,

The corresponding derivatives of, as given by (3.8) in the finite case may be obtained
from (3.15)—(3.17) by exchangingands, X and7T and P and Q. Finally the infinitesimal
form of lemma 3.3 is, to ordex,

2.7 p q * . _ . _
= E<i>(1)R"” k= pt=r (3.18)
HijOUk i+k>porj+1>q.

We close this section with a conjecture concerning transformations in which the new
independent variables and:’ are defined solely in terms aof and:.

Conjecture 3.1If x' = P(x,1),t = Q(x,1),u’ = R(x, t,u) then

omu’ O=min{i, p} ) ) "R
e = (<D ) G (3.19)
Wigjp - O s=max(0, p—j} u

wherei = > n,i,, j =Y 0, j-i + j = p+q and whereC, is a non-zero constant
depending on all of the., j,, n,, and also orp andg.

The precise form ofC; is as yet unknown. The conjecture is supported by the fact
that it agrees with lemma 3.1, corollary 3.1 for= 1 and by the fact that it is valid for a
number of tested cases.
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4. Form-preserving transformations of PDEs

4.1. Basic results

We start with a wide class of PDEs for which general deductions about the forms of
P(x,t,u) and Q(x,t,u) can quickly be made. These will be useful when discussing
the following more restricted classes of equations. Also a general comment about the
existence of hodograph-type transformations can be made. The results are summarized in
the following theorem.

Theorem 4.1The PDEu,, = H(x,t, u, {u;;}) is related tOu;)q = H' X, t,u, {u;j}),
where{u;;} and{ugj} respectively denote all derivatives ofandu’ of orderi +j < p +g¢,
are related by the point transformatiah = P(x,t,u),t’ = Q(x,t,u),u’ = R(x,t,u)
in the cases: (ap # 0,g # 0 (b) p # 0,g = 0 (c) p = 0,q # 0 only if (a)
{P=Px),0=0@mntor{P =P1),0 =0} (b) 2 =0, (c) P = Px),
respectively.

Proof. For the proof of theorem 4.1 we consider the fate of the highest-order derivative of

uy,, = H' under the point transformation. Consider lemma 3.1, corollary 3-8, > 1,
that is
au;%[ q NP pd —-p—q-—1
= (-4 PLIS (3:4)
pPTq
8“;"] P NP p4 —p—q-—1
FT— = (—1)” Q" PLJs . (3.5)
PTq

In case (a) neithep = 0 norg = 0 so that both of these expressions must vanish in order
for u),, to generater,,, alone of orderp+¢. Any lower-order derivatives af’ which occur
in H' transform to derivatives ai of order less thamp + ¢g. Hence,Qr Pr = Qx Px = 0.
Hence, eithefP = P(x), 0 = Q@)} or {P = P(t), Q = Q(x)} as required.
In case (b), in whichp # 0 andg = 0, only the expression in (3.5) must vanish, so
that Ox = 0 and hence) = Q(¢) as required.
Case (c) follows by symmetryc(«> t, P <> Q, X < T, p <> q) from case (b). O

A corollary of this is that for a hodograph-type transformation in which either or each
of x’ and ¢ has a dependence an andu’ has a dependence on either or eachx of,
only cases (b) and (c) can apply. This gives a simple test for the possible existence of a
hodograph-type point transformation for PDEs with two independent variables, namely:

a hodograph-type transformation can only exist if either there are at least two highest-
order derivatives present, or the single highest order is pure, not mixed.

4.2. Equations of the formg, = H(x,t, u, ..., uy)

Spurred on by the result of Tu [11] that infinitesimal point transformations for equations of
this type withn > 2 must take the form’ = t + ef(¢) + o(€?) (no x or u dependency)

and also by the fact that all point transformations (discrete or continuous) connecting two
different Burgers-type equations (Kingston and Sophocleous [1]) were also of this form,
Kingston [12] generalized Tu’s result accordingly. He also went further to show that for a
wide subclass of these equations it is necessary’fer P(x, t) (nou dependency). These
results are incorporated in theorems 4.2a, b.
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For a subclass of these evolution equations in wiiich’ have no explicit dependence
ont and¢ and for point transformations restricted tb= P(x, ), = Q(x,t). Kalnins
and Miller [13] described a method of using the Lie point symmetries of one equation to
obtain a point transformation connecting that equation to another. For example, they use
the symmetryr’ ;2 + -2 — - of the KdV equatiorw = u),,., + u'u/, to find the point
transformationx’ = x + t?/2,t' = t,u’ = u — t relating the KdV equation to the new
equation

Ui = Upyy + U, + 1.

For this particular example Withl = u,, +uu, +1 andH’ = v/, + u'u), we note that
theorems 4.2a, b predict that f and Q exist they must be of the formB(x, t) and Q(¢),
in accordance with the above results.

Theorem 4.2a.The point transformation” = P(x, t,u),t’ = Q(x,t,u), u' = R(x,t,u)
transforms

ug, = H' (X', ' u', ... ulp) (4.2)
to

uor=H(x,t,u,...,u,) (4.2)
wheren > 2 if and only if 0 = Q(¢) and

H=J10,(PxQ0,H + P,Rx — PxR)). (4.3)

Proof. Theorem 4.1 applies witlp = 2 andqg = 0, so thatQ = Q(¢). Eachu}, in H’
transforms to an expressionins, u, uso, . . . u;0, that is nor derivatives ofu are introduced.
Equation (4.1) thus transforms to the form (4.2) and the forn#/aé determined, with no
further conditions onP, Q and R, from (4.3) for anyH’. d

Theorem 4.2b. If, in theorem 4.2a,H and H’' are polynomials (non-negative integral
powers) inua, ..., u,0 andul,, ..., u,, respectively (dependency ont,u andx’,t', u’
unspecified) therP = P(x, 1).

Proof. The proof of theorem 4.2b is given in [12].

These results have been used, for example, to aid the classification of point
transformations within the following classes of PDEs: generalized Burgers equations
[1]; radially symmetric nonlinear diffusion equation [14]; generalized nonlinear diffusion
equations [15]. Of course these point transformations necessarily include all invariant
continuous Lie point symmetries of members of each class. They also include additional
discrete symmetries. For example, Pallikaros and Sophocleous [15] studied the equations

up = x"(x" f(u)uy),

wherem andn are any real constants. In particular the discrete reciprocal symmetries were
found:

U, = x(x_lu_zux)x X' =- t
X

U, = x(u_zux)x X =
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In each of these two examples we note that the conditions of theorems 4.2a, b are met and,
indeed,x’ = P(x,t) andt = Q(¢) as predicted.

When H and H’ are not of the polynomial form described in theorem 4.2b the result
x' = P(x,t) does not necessarily follow as can be illustrated by poee hodograph
transformationx” = u, ¢’ = ¢, ' = x in which one independent variabteand the dependent
variable u change roles. Clarksoat al [16] used this transformation and axtended
hodograph transformatiorto analyse classes of linearizable PDEs. The pure hodograph
transformation leaves both, = (u“)% and the third-order potential Harry—Dym equation

U, = (u;%)“ invariant. In each cas# contains negative or fractional (or both) powers of
a derivative ofu, sox’ = u is consistent with theorem 4.2b.

Note thatx’ = 2,/ =1 ' = “ leavesu, = (u,,)~/? invariant so the condition o#f
in theorem 4.2b is not a necessary conditionafoe= P(x, ).

4.3. Equations of the formy; = H(x, t, u, ..., o)

This class of PDEs includes, for example, Liouville’'s equation = €, the Tzitzeica
equationu,, = e — e 2 (also known as the Dodd-Bullough equation) and the potential
sine-Gordon equation,, = u/1 — u?.

Theorem 4.3an > 3). The point transformation’ = P(x,t,u),t’ = Q(x,t,u),u’ =
R(x,t, u) transforms

uy=H' X\t u', o ug) (4.4)
into

uir1= H(x,t,u,...,uy) (4.5)
wheren > 3, ifand only if P = P(x,t), Q = Q(t), R = A(t)u + B(x,t) and

H=A"P,Q,H +uP *P +uio(P; P), — A A) — A7Y(B, — P7'P.B,),. (4.6)

Proof. From theorem 4.1 witlp = n andq = O it follows that Q = Q(¢). Relation (2.11)
simplifies tou)y = P71} ,o)x, i > 1, so that na derivatives ofu arise fromu/y, i > 0,
and H' transforms to the fornH.

Hence, equation (4.4) onIy transforms to (4.5)jf gives rise to no terms ing, Or uo;.
Thus az“ =0, so thatdum(du“) = —Q,P,J82% = 0, using equation (3.4) of lemma 3.1,
corollary 3.3, withp = ¢ = 1. Hence,P = P(x,t). Equation (4.4) now transforms to
equation (4.5) and{ is given in terms ofH’, whateverH’, by equation (4.6). O

As an example of the use of theorem 4.3a all point transformations which are symmetries
of the equation

Uyy = Uyrx + 2Uylly, (47)

will be found. This equation may be recognized as:tkderivative of the potential Burger’s

equationu, = u,, + u? so that we can expect some Lie point symmetries to exist, at least.
Using the forms ofP, Q and R in the theoremH’ = u%, + 2u’jqu’, may be expressed

in terms ofx, ¢, u, uyg, uzo anduzg and then substituted into condition (4.6). Equation (4.6)

then becomes a polynomial ing, uzo anduszg. The coefficients ofiyguzo, ufo, uzg anduog

give respectivelyA =1, P,, =0, Q, = PXZ, B, = —%Px—lP, and the remaining terms give
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P.P, = 2P,P,. The forms of P, Q and B are now easily determined and the possible
symmetries of (4.7) may be represented as two classes of multiparameter transformations

c1x +c3 —c? (c1x + c3)?
1 X=——+c t = +c u' = ——— +b(t
D t+c N t+co Ac3(t + ¢2) ©
2 x' =c1x +cot +c3 !'=c2t+ey U =u— %cl_lczx + b(1).
Herecy, ..., c5 are arbitrary constants aridr) is an arbitrary function of which occurs

as a translation of and is a reminder that (4.7) may be written in terms:of

These two classes of transformations contain the Lie point symmetries of (4.7) and also
a discrete symmetry which is an element of a finite cyclic group of order 4 and is obtained
by settingcs = 1, ¢c; = ¢c3 = ¢4 = ¢5 = b(¢t) = 0 in class (1):

T: x' =xt7t =1 u =u+ L—llxzfl.

T2 represents the reflectiorf = —x, ¢ = ¢, u’ = u and T* is the identity transformation.

Theorem 4.3n = 2). The point transformations’ = P(x,t,u),t’ = Q(x,t,u),u’ =
R(x, t, u) which transform

uyy = H' (X' ' u', ulg, ubo) (4.8)
to

Uil = H(xstvl't:MlO’ u20) (49)
belong to the two categories:

(a) P, O, R and H restricted as in the conditions for theorem 4.3a;

(b) P = P(x,1),Q = Q(x,t),R = A(x,t)u + B(x,t), H = —PXQ;lu’ZO -
ASTHATIO ) g + G/ (X 1w, H = Q7'Quuzo + AH(AQ100)x — Aduio +
G(x,t,u). For any G'(x',t',u’) the form of G(x,t,u) is then determined by the
transformation without further condition. Alsé,= P.Q; — P, Q,.

The proof of theorem 4.3b is given in appendix B.
As an illustration consider the discrete (reciprocal) transformation

X =x1 = x% u' =ux"L.

This belongs to case (b) and corresponds to
P(x,t)=x"1 O(x, 1) = x°t A(x, 1) =x"1 B(x,1)=0 §=—1.
The theorem shows that the equation

’ 1. r-1 Pl o)
Upp = 35X "y + G (X, 1, u)

transforms into
Y 4+ G(x, 1, 1)
whereG is defined for anyG’ by

G(x,t,u) = xG' (x~%, x%t, ux71).

For example, the equation,, = %xt‘lu” + ru® is invariant under this reciprocal
transformation.

Uy = %xf

Theorem 4.3¢n = 0, 1). The point transformations’ = P(x,,u),t' = Q(x,t,u),u’ =
R(x, t, u) which transform

uy = H' (X' ' u', ulyp) (4.10)
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into
uiy = H(x,t,u,ui) (4.12)

belong to one of the two categories (wher= 0 setA constant in (a) and (b)):
(@P=Px),0=01),R=AM0u+ B(x,1)

H=A"P.0,H — A *Au10o— A7'B,, (4.12)

(b) P =P),0 = Q(x),R = A(x,Du + B(x,1), H = A A, Q7 )y + G'(x', ', u),
H=—-A"Aup+ AP0, G —u(A7*A), — (A71B)),.

The proof of theorem 4.3c is deferred to appendix B.

In particular these point transformations include continuous Lie point transformations
which leave equation (4.10) invariant. For example the Liouville equatign= €'
possesses an infinite-dimensional symmetry which may be written in the finite form

x'=P((x) ' =0(@) w =u—In(P.Q))

where P(x) and Q(¢) are arbitrary differentiable functions an®.Q, # 0. This is in
accordance with theorem 4.3c, case (a), withh) = 1 and B(x, t) = — In(P, Q,).

4.4. Equations of the formg, = H(x, t, u, ..., i,0)

These equations include many models of physical phenomena, especially wave-type motions.
Examples include the (linear) axially symmetric wave equatipr= u”-l—%ux, the equation

u, = —u,uy, Which arises as a model of steady (hereepresents a spatial coordinate)
transonic gas-dynamic flow, the family of nonlinear equatiapns= (f(u)u,), and the
Boussinesqg-type equation

Upp = Uxy — 2(u3)xx + Uxxxx- (413)

Theorem 4.4an > 3). The point transformation’ = P(x,t,u),t’ = Q(x,t,u),u’ =
R(x,t,u) transforms

ug,=H'(x',t',u', ... u)p) (4.14)
to

ugp=H(x,t,u,...,u,) (4.15)
wheren > 3 ifand only if P = P(x), Q = Q(¢t) andR = A(x)Q,l/Zu + B(x,t). Also

H =A@ 10; *(Q3H' + QuR, — Q,Ry). (4.16)

Proof. From theorem 4.1, witlp = n andg = 0, it follows thatQ = Q(¢). Relation (2.11)
simplifies tou), = Py (u,_,)x,i > 1, so it is evident that the transformed,, i > 0,
involves not derivatives ofu. Hence, (4.14) can only be transformed into (4.15)j§
does not give rise to either of the termg or up;. However, lemma 3.1, corollary 3.4 gives
gZ—ii = —2PxPrJ53, and sincePy # 0 (otherwiseP and Q are functionally dependent)
it follows that Pr = 0 so thatP = P(x).

Lemma 3.3 now give%l”—é’f = RWQ;2 = 0 showing thatr is linear inu. Further2“e —

dup1
07322Q,R, — QuR,) = 0, so thatR is necessarily of the forn® = A(x)Q,l/zu + B(x, t).
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With these forms ofP, Q and R equation (4.14) is transformed to equation (4.15) and
H is given by (4.16). O

As an example, theorem 4.4a is now used to classify the point symmetries of the
Boussinesqg-type equation (4.13). The restricted nature of the possible point transformations
in the theorem suggests that the variety of symmetries will be limited. When (4.16) is
expanded the coefficients afp and uzg give respectively thai?, QO are linear functions
and A is constant. This simplifies (4.16) considerably and #lg, term is then seen to
imply that B(x, r) = 0. It then rapidly follows that all point symmetries of

3
Uyp = Uxxy — 2(” )xx T+ Uyxxx

are included in the transformation
X' =cix+c t' =c3t+ca u' = csu

wherec,, ¢4 are arbitrary constants corresponding to continuous translationsuodz, and
¢ = ¢ = ¢2 = 1 which gives all combinations of the three discrete reflection symmetries:

x'=—x;t = —t; u' = —u. These reflections are, of course, clearly visible in the equation.
Theorem 4.4b(n = 2). Point transformations’ = P(x,t,u),t’ = Q(x,t,u), u' =
R(x, t, u) which transform
ug, = H' (X', ', u', ug, uhg) (4.17)
into
uor = H(x,t,u, uig, u) (4.18)

WhereH;,20 # 0, belongs to one of the three categories:

(@) P, O, R and H restricted as in the conditions for theorem 4.4a;

(b) P = P1),Q0 = Q(x), H = H'(',t',u,ubg + M3 + puy), wherer =
_RuuRu_is n = Pf_zfu_z(ZPIRtRuu_2PtRuRut+PttR3)v H = H(-xa t,u, u20+RuuRu_1Mi0+
(2RuxRu_ — Oxx Q; )u10);

© P =P, 1,0 =010,R=Ax1nu+ Bx,1), H = P.P0 0 uyy +
GL(xX', g+ Go(x' 1/ u'), H= P P,0 Quuzo+ Gi(x, uro + Ga(x, t, u).

The proof of theorem 4.4b is given in appendix B.
The one-dimensional nonlinear wave equation

uy = (f (Wuy)x

where f(u) is not constant, is an example of equation (4.18). &Rheerm which arises
in this equation excludes case (c) since neitHenor H' can take this form. The theorem
therefore predicts that all point transformations between such equations must be such that
x" andt’ take one of the two forms (&' = P(x),t’ = Q(@), (b) x' = P@),r = Q(x).
Ames et al [17] classified the Lie point symmetries of this class of equations and found
that, depending on the nature ¢fu), the symmetry Lie algebra is 3, 4 or 5 dimensional.
All of these are of type (a). As well as these continuous symmetries there is a discrete
symmetry for general (1) in which x and¢ change roles (see for example [18]). This is
of type (b). For further study, the theorem could be used to classify all point symmetries
including all discrete symmetries as well as the known continuous symmetries.

Another example is provided by the symmetny 2- + (x*+ %) 2 —ur 2 of the axially
symmetric wave equation,, = u,, + %ux. The finite form of this isx’ = c(x, 1)~ 1x, ¢ =
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e, )7Lt +a(x® —12), u' = c(x, t)2u wherec(x, t) = 1 — 2at — a(x2 — t2). This one-
parameter family of point transformations belongs to the class described in theorem 4.4b,
case (c), in whichA(x, 1) = c(x, 1)z and B(x, t) = 0.

We know of no studies of the full (discrete as well as continuous) point symmetry
groups of equations or families of equations of the type of section 4.4.

Theorem 4.4an = 1). Point transformationss’ = P(x,t,u),t’ = Q(x,t,u), u' =
R(x, t, u) which transform

ugy = H'(x', 1, u', uyo) (4.19)
into

uoz = H(x,t, u, uio) (4.20)

WhereHLi,10 # 0, belong to one of the three categories:
(@) P, O, R and H restricted as in the conditions for theorem 4.4a;
(b) P=P(x),0 = Q(x,1),0x #0,R = A(x,)u + B(x, 1), H = G| (x', 1o+
GL(x',t',u'), H= G1(x, )uro+ Ga(x, t,u), where
Gy=P.Q.'07 Q10 —2471A)
G1=0.'0:/(0;'Q; —2A7'A,)
Go=A10%GL+ A2Q M (Fiu + F»)
F1 = 0, AA, —20,A A, + Q. (2A7 — AA,)
F, = szABx - ZQerAz + Qx(ZAtBt - ABtt)
©P=Px),0,#0,0=fE.R=gE+Ax,Df(EV2E=A
H' = Gy(u)y+ G2+ Gy H = G1(u10+ G)® + G2, where
1=APHE) 3G,
Gy= O NS E DA+ EE S E™)
Go=—AZ((GA, *Ay)u+ (BATY))
G = AP (&)
_1
G=3A;"Aqu+ A *B,.

Y24+ B(x, 1),

In the aboveA, B, f andg are arbitrary (suitably differentiable) functions.

The proof of theorem 4.4c is deferred to appendix B.

The class of equations (4.20) considered in theorem 4.4c is done so for completeness
of the study in section 4.4. Perhaps a more natural form of (4.20) is, switehamgiz, the
class of evolution equations

uor = F(x,t,u,ux)

which is a subclass of the equations studied in section 4.2. However, (4.20) is developed
further here.

In all three possible cases it is noted tléats of the form P (x). The form oft’ changes
from Q(¢) in (&) to Q(x, 1) in (b) and finally toQ(x, ¢, u) in (c). The latter case offers the
possibility of hodograph-type transformations in which there is some interchange between
dependent and independent variables. The nature of the funitions, u, uio) differs in
the three cases. In (a) the form &f can be very varied whereas in () has to be
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linear inu;9. Case (c) is perhaps the most interesting since as well as a more interesting
transformation the function& and H' are cubic functions ofi1p andu’, respectively.
An example is therefore given of case (c) by selecting

P(x)=x f& =¢ gE) =0 A(x,n)=-1" B(x,1)=0
which gives
G=G=G,=G,=0 Q=ut™ , R=—1t"1

and implies thatu,, = Giu’>, transforms intou,, = Gu® where Gi(x,1,u) =
178G (x, ut™t, =171
In particular, choosingz)(x', ', u’) = (t'u’)~2 gives G1(x,t,u) = (tu)~2. Thus, the
result follows that the equation
Uy = (tu)fzui
has the discrete symmetry

1 ’

X =x ' =ut” u = —t71.

This transformation belongs to a cyclic group of order 3.

5. Conclusion

We have drawn attention to the fact that in addition to the important Lie symmetry groups
of PDEs there may also be discrete finite groups of point transformations which, with
the Lie groups, form the complete symmetry group under point transformations. In the
introduction some reasons were listed for why it may be rewarding to search for discrete
point transformations. To this end we have studied three common classes of equations
restricted to one dependent variable and two independent variables and deduced results,
summarized in theorems, concerning the nature of connecting point transformations.

At present there appear to be very few complete analyses of full symmetry groups
(discrete and continuous) of PDEs, unlike the Lie symmetry groups for which a large
catalogue (see, for example, Ibragimov [18]) exists. It is relatively easy to construct PDEs
artificially with given finite symmetry groups. For examplg,= (xuu,,)'/? is invariant
underx’ = 1/u,t’ = t,u’ = x/u, which transformation forms a cyclic group of order 3.
What variety of finite symmetry groups exist within PDEs of practical importance is largely
an open question.

For systems of equations with two or more independent variables the situation is the
same regarding the complete knowledge of the full group of invariant transformations,
discrete transformations included. The self-consistent system of two equations

lI’)cxl = \I/xq"xt/\p + (\yxxlpxt + )"\IJLIjt)/lpx

Wo = Wil /W + (W Wy + 47100 /W,
is invariant under the point transformation (reciprocél)—» 1/W¥,x — —x,t — —t.
These two equations arise from the linear representation of the Dodd—Bullough equation
Uy =€ —e 2 namely

U = u, W, — A7, v, =e'w U, = —A7te ", 4 u, 0,
¥ being the eigenfunction.

Also there are useful point transformations between different equations with more than
two independent variables. For example the Kadomtsev—Petvialishvili (KP) equation

/ i ’ 2.7
(up + 6ty + Uy )y = —3aUy,y,
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and Johnson’s equation [19]
(ut + 61'”4): + Uyxx + 2[> = 3a2u)’)’/t2
are connected by the point transformation
x =x — yt/(120?) y =yt =t u =u.

This enables solutions of Johnson’s equation to be constructed from solutions of the K-P
equation.

Further study, along the lines of this paper, of systems of equations or a single equation
with more than two independent variables may therefore be useful.
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Appendix A
In this appendix, we give the proofs of lemmas 3.1-3.3.

Proof of lemma 3.1.First note thatu,, may be expressed as a function xff, u and
the derivatives of: up to orderp + ¢g. Hence, both(u X and (u T will be linear in
(p + g + Dth-order derivatives ofi. Specifically, ifi + ] =p+q + 1

o'u
' —r i>1
apq)x = u; 4, (A1)
i 0 i=0
u
au’ — i>1
(aM)T I T J (A.2)
i 0 ji=o.

We use induction om. Forp >1andi+ j=p+qg =n+1n > 1, relation (2.11)
gives
n+1 au/ n+1

Zziﬁzg " (8 1(QT(M _1)x — Ox(u),_1,)7))

i=0
n+1 1 1
=5 1 z P q z u;_ J
(Z Q Z(; Q aulj 1

Uj—1j

using (A.1) and (A.2) and noting that+ j > 2 and thats, Qx and Q7 involve only first
derivatives ofu,

= —574(Qx —er)Zz

314,] 1
noting that; does not attain O,
= (-1"(Qx —zQ7)"(Px —zPr)?J8s P41 (A.3)
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using the induction hypothesis. Equation (A.3) is lemma 3.1 with 1 in place ofn.

For g > 1 the corresponding steps, using (2.10) initially, gives exactly the same result
(A.3).

For the basis of the induction we need to consider the two cases forl, namely
(p,g) = (1,0 and (p,q) = (0,1), and the casee = 0. When(p,q) = (1,0) it is
necessary to show that

ou ou
204 20— —(Qx —20Q7)J87?
duoy duio

and it may be readily verified by direct calculations that

ou’ ou’
“10 _ —QyJ82 U0 _ 077872,
ougy duio

The case(p, g) = (0, 1) follows similarly. Finally, the basis is completed by the case
n = 0, for which

izi% — 8u_60 =R,

i—0 8uij 3u00

as required. O

Proof of lemma 3.2To prove (3.7) we use induction am-+n. Assuming that (3.7) is valid
for a givenm +n > 1,

8m+n+luél_0 ., o

i = (CD"Cun (1@ 08 + (m +n + Da(na Ox +mpQr))8

31410 81,{01
= (_1)ncm,n05(m +n)(naQx + (m + 1)ﬂQT))5_m_"_2

using the fact thattQ, — BQ; + ¥ Q. = 3;%?-3 =0,

= (—1)"Cm+1,n(noe Ox + (m+ 1)'3 QT)Sfmfnle

Similarly it may be shown that

am+n+l /

u
m—nj(lj = (=1)"Cppp1((n + DaQx +mpQOr)s " "2
duodug

The basis of the induction consists of the two cases,n) = (1, 0) and (m,n) = (0, 1),
for whichm 4+ n = 1. Lemma 3.1, corollary 3.3, or direct checking, shows that

a /
=QrJ87? Mo _ —QxJ§72
du1g duo1

which conform to (3.7) as required.
Equation (3.8) follows from (3.7) by symmetry. Switehandz, X and7, P and Q, «
and 8, andm andn, but note that, for these changés, , remains as’,, . O

Proof of lemma 3.3.Induction may be used op + g = n. Suppose (3.9) is true for all
p,q such thatp + ¢ < n — 1 for a givenn and considep + g = n.
Forp>1(andg >0,i >0,/ > 0),

ou’ P ou’

rq -1 ’ p—
i _ p-1 7 . 2 o 1q
ouj * Quyj {(up_lq) a.p e dutap }
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X

_ prf (M) -+
x {( oy ), Z”"“ﬂa

wherer = 24 if i > 1: 2 =0ifi = 0.

using (2.11), which reduces td,, = P~ Tw . 1q)X, and (2.5),

uj_q
Hence,
d%u’ &

Pq — P—l N « -

—auljaukl i F e I Zu 118 Dites +v

a,B
where

82 /

E_ R 1
Bu,jaukl

82 /

p= lrta if k>1 w=0 ifk=0

3ul]3uk 1

o _ 9w,y
C Quy  Oui_1,0uy
Fori +k = p andj + 1 = ¢ the induction hypothesis givés= 0 sincei +k > p — 1.
Also, using the expressions farandv given by (3.9) under the induction hypothesis gives
E=u=v=0.
A symmetrical argument may be used when= 1 andp > 0 by using (2.6) in place
of (2.5) at the start of the above calculations.
Hence, a basis of the induction is provided by= 0. Herep = ¢ = 0 and (3.9) is
evidently true. O

ifi>1 v=20 if i =0.

Appendix B
In this appendix, we give the proofs of theorems 4.3b, 4.3c, 4.4b and 4.4c.

Proof of theorem 4.3b.Let E = u’, — H’, apply the transformation and then substitute

u;; = H. E will now, possibly, depend on, ¢, u, uig, uo1, uo2 and uze, but for
equation (4.8) to transform into equation (4.9) we require fhat 0.
In particular,

E duyy,  OH duy,

= 0
81402 31402 814/20 auog

and from the two cases of lemma 3.1, corollary 3.3, equation (3.5), corresponding to
p=qg=1andp =24 =0, we have
—QxJ873(Px + Qxihy) = 0.
Hence, either (a)0x = 0, so thatQ = Q(), or (b) Ox # O, H = —PXQ;(lu’zo—i-
GL(x', v/ u', ulp).
For case (a) the same analysis applies as for theorem 4.3a.

For case (b) equation (4.8) is linear in the second-order derivatives arfid this will
transform into an equation which is also linear in second-order derivatives. Thus

H = Gy(x,t,u, uio)uzo + Ga(x, t, u, uio).
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Since 2£ = —571Q;*R,(G10, — Q,) = O, it follows that Gy = Q;'Q,. Next,
2E _ -2, PE a1
dupy g G2“/10”/10 and duorduio 87 Ry, SO that

G,y =Gy, 1", uuyg+ G'(x' 1" u')
and
R=A(x,0)u+ B(x,1).
Also % = —8"YAG 2, = 0, giving
Go=Ga(x,t,wuro+ G(x, t, u).

Solving £ = 0 and ’£- = 0 simultaneously gives

EITn
G3=A((AQ;*Q): — A) Gy=—As"HATT0 1),

Finally, E = 0 provides a lengthy relation betweéhand G’ which serves to determine
G (x, t,u) corresponding to ang’(x', t', u’). O

Proof of theorem 4.3cFrom theorem 4.1 witlp = ¢ = 1 we have two cases to consider:
@ P = Px),0 = Q(@);, (b) P = P(t), 0 = Q(x). These are distinct cases since
equation (4.10) is not symmetric it and?’.

For case (a)H’ transforms into a function of, ¢, » and u1p SO we require that,
transforms into a function of the same variables, having replagedby H. Hence,

gﬁ—ii = 8" (Ruu10+ Ry) =0, giving
R=AMu+ B(x,1).

Equation (4.10) now transforms into (4.11) wikh as stated in (4.12).
In case (b) letE = uy, — H' with H substituted for,;. Thus, E = 0 for the given
transformation to exist. Hencg“h% = 8~Y(Ry,u01 + Ry + R,H,,) =0, giving

R=A(x,tu+ B(x,t)
and
H=—A"Au0+ G(x, t,u).
Also ;‘u—’jl =81A, — AQ.H,, ) =0, so that
H = A"tA, Q;lu’lo +G' (Xt u).
Equation (4.10) now transforms into (4.11) with being determined by’ as
G(x,t,u) =AP0, G —u(AtA), — (A71B),

and the proof of case (b) and theorem 4.3c is complete:fer 1. Whenn = 0, H and
H'’ contain no derivatives af andu’ respectively and the further restriction= constant
must apply. O

Proof of theorem 4.4b.The expressiorE = uy, — H' becomes, as a result of the point
transformation, an expression i ¢,u and the derivatives ofi up to order 2. This
expression £ 0) is to be identified with equation (4.18). That is,u, is replaced by

H in E then the resulting expression is required to be identically zero in terms of the
remaining seven variables ¢, u, u1g, o1, 20 anduys.
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In particular, 22 = 0 and-.£ = 0, using the corollaries of lemma 3.1, give

Ox QTHU’zo = PXPT
and
H,, (0F + Q% Huy) = PE+ PEHiyy,.
These conditions show that all possibilities are included in the three cases: (a)
P=Px),0=0(@);(b)P=P),Q= Q) and (c)
H' = Py Pr Oy 07 ube + G' (X', ' i/, uly) (B.1)
H = Py'PrQy Qruzo+ G(x, 1, u, u0). (B.2)

Case (a) follows exactly as in the proof of theorem 4.4a following the stage at which
P = P(x) and the results here are exactly as in the sole case of that theorem.

In case (b)ug, transforms to an expression in¢, u, u1o anduzo, and thus contributes
to the right-hand side of equation (B.1). HowevAl(x', ¢, u’, u},, ub,) introducesuo; via
uyo and bothug, anduo, via uj,. To obtain equation (4.18) it is therefore necessary that
uo1 cancels out between the fourth and fifth parameterff ofNoting that

up, = (uorR, + RHP!
gy = (uoaP, Ry + udy PRy + u01(2P, Ry — PuR,) + PRy — Py R) P73

it is straightforward to show thati’ must take the functional form claimed in the theorem,

case (b). The termo; now disappears fronH’ and the transform of, = H' allows uq

to be expressed as a functionxaft, u andug,, the form of H claimed in the theorem.
Finally in case (c) we havél’ and H given by (B.1) and (B.2).H is independent of

uo1, SO that (B.2) implies thaPy* Pr Q5 Q7 is independent ofigy. It readily follows that

P = P(x,t) and Q = Q(x,t). Considering agairE = ug, — H’, transformed, withug

replaced byH, we have successively

0’E

——— =—-0.0,RG,, , §2=0

auloaum
giving

G =Gy, ', uuly+ Go(x', ', u') (B.3)

d’E

— =2P.Q; 'Rt =0

oug,
giving

R = A(x,)u + B(x,1) (B.4)
and

d’E

3 = P Qt lR Guloulo =0

”10

giving

G =Gi(x,t,wu+ Ga(x, t, u). (B.5)
Finally ;22— = 0 and a;’ “:(;u = 0 give G, = 0 and Gy, = 0 which, combined with
(B.3)- (B 53 completes the proof of case (c) of the theorem. O

Proof of theorem 4.4cTheorem 4.1 withp = 0 andg = 2 givesP = P(x). As earlier we
setE = ugp, — H’, use the point transformation and then replaggby H. Thus E can
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be expressed in terms of 7, u, u;0 andug; which expression must identically vanish. We

consider derivatives of; = E8%. In particular,8“30215;10 = 0 implies that
20,H,, —JP7?QxQ; Hy, . =0. (B.6)

This enables the analysis to be separated into the three casesQ ) Q(¢); (b)
0=0(x,1),0#0,H =G|(x', ', u)ujg+ G5o(x', ', u); (c) Qu # 0.
Case (a) may be completed by noting that
oFE
o = PA(2u010, Ruu + 20, Rur — QuR.) = 0
uo1
which givesR,, = 0 and D, R,; = 0, R,. These give the form oR(x, ¢, u) as claimed
in the theorem.E; = 0 then shows howH is related toH’ as displayed in theorem 4.4c
(a), the same as for theorerp 4.4a and tr;eorem 4.4b case (a).
In case (b) the identitie§-2* = 0 and 25 = 0 give respectively,
10 o1

H = Gi(x, t,wuio+ Ga(x, 1, u)
and
R =A(x,t)u + B(x,1).

Then ;% = 0 and f,’foll = 0, together, lead to the forms @) and G; claimed in the
theorem.E; is now identically zero provided thak, and G/, are related as stated.
For the third case (c) we consider equation (B.6) and exprgss terms ofug,; u1o

in terms ofu’, andug,. This gives

(wyo+GHH, , —2H, =0 (B.7)
where

G = P10, (Q:Ry — QuRy). (B.8)
Equation (B.7) integrates to give

H =Gy, 1, u) g+ G+ Gox', 1, u). (B.9)

Consideration o% = 0 shows thatH (x, t, u, u1g) is a cubic inuyg, that is
10

H = Gi(x, t,uudy+ Fi(x, t,w)uly+ Fa(x, t, wuio+ Fa(x, t,u).  (B.10)

E4 is now the sum of a cubic in1g and a cubic inip;. For convenience we will denote
the coefficient ofujjug, in Ex by Ei[m,n]. The identitiesE4[2,0] = 0 andE4[1,0] =0
give respectivelyF; = 3G1 0., Q; ! and F, = 3G10?Q; 2, which from (B.8) enable$/ to
be written as

H = Gi(x,t,u)(u1o+ G)® + Gao(x, 1, u) (B.11)
where

G=0.0" (B.12)
Also E1[0, 3] = 0, E1[3, 0] = 0 and E4[0, O] = O give respectively

Gy = (QuRu — Ry Qu) Q;° (B.13)

Gy =G1P2J™? (B.14)

G2 = P10 3I(Q3( QiR — QuR) — Q3 (QuRuu — QuuR)). (B.15)
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Finally we encounter two restrictions on the forms®€x, ¢, u) and R(x, ¢, u) implied
by E1[0, 2] = 0 andE4[0, 1] = 0. These equations may both be integrated with respect to
u and lead to

1

QiR — QuR, = (A7 Q) (B.16)
_1

0,0, =31A A u+ A, *B, (B.17)

where A(x, t) and B(x, t) are arbitrary functions (suitably differentiable). The contrived
form of the appearance of and B in (B.16) and (B.17) is so that the general solution of
(B.16) and (B.17) takes the simple form

0=fE  R=gE) —Af():? (B.18)

where
E=Alu+B (B.19)

and f andg are general.

Incorporating these forms @ and R into the expressions fa&’, G7, G5, G, G2 given
by (B.8), (B.14), (B.13), (B.12) and (B.15) respectively leads directly to the conditions
stated in theorem 4.4c (c). Under these conditidiisis identically zero and the stated
transformation is achieved. |
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