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Abstract. New identities are presented relating arbitrary order partial derivatives ofu(x, t) and
u′(x′, t ′) for the general point transformationx′ = P(x, t, u), t ′ = Q(x, t, u), u′ = R(x, t, u).
These identities are used to study the nature of those point transformations which preserve the
general form of a wide class of 1+ 1 partial differential equations. These results facilitate the
search for point symmetries, both discrete and continuous (Lie), and assist the search for point
transformations which reduce equations to canonical, but similar, form. A simple test for the
existence of hodograph-type transformations between equations of similar form is given.

1. Introduction

Probably the most useful point transformations of partial differential equations (PDEs) are
those which form a continuous (Lie) group of transformations, each member of which leaves
an equation invariant. Symmetries of this equation are then revealed, perhaps suggesting
links with equations studied in a different context, perhaps enabling new solutions to be
found directly or via similarity reductions.

The classical method of finding these transformations is first to find infinitesimal
transformations, with the benefit of linearization, and then to extend these to groups of
finite transformations. However, this method may well overlook discrete symmetries such
as simple reflection or hodograph transformations. Also infinitesimal transformations are
not appropriate for directly linking a PDE with an equation of a different form. This is
useful, for example, when converting equations to a canonical form on which an established
theory can be called.

An example of a discrete symmetry is given by Kingston and Sophocleous [1] who found
that the reciprocal transformation (double application gives the identity transformation)
x ′ = x/t, t ′ = 1/t, u′ = −(ut − x) leaves the Burger-type equationut + uux +
(f (t) − f (1/t))uxx = 0 invariant, a symmetry additional to the Lie point symmetries
obtained from the classical approach. Further, this reciprocal transformation, modified to
x ′ = ix/(αt), t ′ = 1/(α2t), u′ = −iα(ut − x), provides the missing link, postulated by
Doyle and Englefield [2], betweenut + uux + e1/αtuxx = 0 andu′t ′ + u′u′x ′ + eαt

′
u′x ′x ′ = 0

which they had shown to possess the same Lie algebras.
Ordinary differential equations furnish other examples of when Lie symmetries obtained

by the classical method only provide a subgroup of the full point symmetry group. Olver
[3, p184], cites the exampleuxx = xu + tan(ux) which has no continuous symmetry
yet possesses the discrete reflection symmetryu → −u. A more interesting example
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1598 J G Kingston and C Sophocleous

(Reid et al [4], Englefield [5]) is uxx = ux/x + 4u2/x3 which admits the scaling
symmetry groupx ′ = αx, u′ = αu, in addition to a cyclic group of order 4 generated
by x ′ = x i, u′ = −ux i−1− 1

4x
i .

Discrete point transformations between equations of similar form have also been used by
Chen [6] to find B̈acklund transformations. In the AKNS scheme the linear representation

of nonlinear equations has eigenfunction9 =
(
91

92

)
, say, which when eliminated can

produce soliton equations, for example the KdV equationut + uxxx + 12uux = 0. The
linear representation also shows thatv = 91/92 satisfies two Riccati equations, one for
each independent variablex andt . If u (see above equation) is eliminated from these Riccati
equations, the resulting equation forv is vt + vxxx − 24v2vx + 24kvvx = 0. Chen showed
how the simple reflectionv→−v, which leads to a PDE of a similar form (k→−k) can
be used to derive the classic Bäcklund transformation for the KdV equation. However, this
approach is probably more for interest than for efficiency of method.

Changing PDEs to canonical forms is another application of discrete point
transformations. A model of nonlinear waves in a weakly inhomogeneous plasma was
given by Zakharov [7] as the variable coefficient cubic Schrödinger equation

iu′t ′ + u′x ′x ′ + 2u′2u′∗ − 2αx ′u′ = 0.

Chen and Liu [8] used the point transformations

x ′ = x − 2αt2 t ′ = t u′ = u exp[−2iαxt + 8
3iα2t3]

to convert the above equation to the cubic Schrödinger equation

iut + uxx + 2u2u∗ = 0.

A second example is the conversion of the cylindrically symmetric nonlinear diffusion
equation

u′t ′ =
1

x ′
(x ′u′−1u′x ′)x ′

to the one-dimensional equation

ut = (u−1ux)x.

King [9] achieved this with the point transformationx ′ = ex, t ′ = t, u′ = e−2xu and went
on, [10], to generalize and exploit this.

The above reasons and examples show that there is merit in studying point
transformations directly in finite form with the ultimate dual goals of finding the complete
set of point transformation symmetries of PDEs and discovering new links between different
equations.

The aim of this paper is first to present results concerning the relation of the transformed
partial derivatives to the original partial derivatives and secondly to exploit these results to
reduce the general range of point transformations connecting PDEs belonging to restricted
classes of equations.

In section 2 we explain the notation and summarize the basic theory on which the work
herein is based.

Relationships between partial derivatives are considerably more cumbersome than
the corresponding relationships for infinitesimal transformations which themselves expand
rapidly with increasing order. However several manageable results are presented in section 3
as lemmas 3.1–3.3 and corollaries 3.1–3.3 (to lemma 3.1). The proofs are given in
appendix A. Section 3 finishes with the tentative unproven conjecture 3.1.
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The results of section 3 help us achieve the second aim of the paper which is to discover
the nature of point transformations connecting PDEs belonging to given classes of equations.
Thus, in section 4 we first look at PDEs with one partial derivative ofu(x, t) of any order,
possibly mixed, related to lower-order derivatives ofu, u itself, andx and t . That brief
study is summarized by theorem 4.1, which is followed by a simple test for the existence
of hodograph-type transformations between equations of certain types. Subsequently, we
consider three classes of equations. IfH represents a function ofx, t, u and derivatives of
u we discuss evolution equationsut = H and also the two classesutt = H anduxt = H .
The results are summarized in theorems 4.2a, b, 4.3a–c and 4.4a–c.

2. Point transformations: Notation and basic theory

We consider the point transformation

x ′ = P(x, t, u) t ′ = Q(x, t, u) u′ = R(x, t, u) (2.1)

relatingx, t, u(x, t) andx ′, t ′, u′(x ′, t ′), and assume that this is non-degenerate in the sense
that the Jacobian

J = ∂(P,Q,R)

∂(x, t, u)
6= 0 (2.2)

and also that

δ = ∂(P (x, t, u(x, t)),Q(x, t, u(x, t)))

∂(x, t)
6= 0. (2.3)

In (2.3)P andQ are expressed as functions ofx and t whereas in (2.2)P,Q andR are to
be regarded as functions of the independent variablesx, t, u.

The derivatives ofu(x, t) andu′(x ′, t ′) will be denoted by

uij = ∂i+ju
∂xi∂tj

u′ij =
∂i+ju′

∂x ′i∂t ′j
. (2.4)

If 9 is a function ofx, t, u and the derivatives ofu, the total derivatives of9 with
respect tox and t will be denoted by

9X = 9x +
∑∑

ui+1j
∂9

∂uij
(2.5)

9T = 9t +
∑∑

uij+1
∂9

∂uij
(2.6)

where the double summations are to be taken over the values ofi and j which cover all
derivativesuij occurring in9.

With this notationδ may be expressed as

δ = ∂(P,Q)

∂(X, T )
= PXQT − PTQX

= − u10(PtQu − PuQt)− u01(PuQx − PxQu)+ (PxQt − PtQx). (2.7)

Also, under the point transformation (2.1),(
dx ′

dt ′

)
=
(
PX PT
QX QT

)(
dx
dt

) (
dx
dt

)
= 1

δ

(
QT −PT
−QX PX

)(
dx ′

dt ′

)
(2.8)

and

d9 = 9Xdx +9T dt = 1

δ
(9X 9T )

(
QT −PT
−QX PX

)(
dx ′

dt ′

)
. (2.9)
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Hence, taking9 = u′ij−1, u
′
i−1j respectively, gives

u′ij = δ−1(PX(u
′
ij−1)T − PT (u′ij−1)X) j > 1, i > 0 (2.10)

u′ij = δ−1(QT (u
′
i−1j )X −QX(u

′
i−1j )T ) i > 1, j > 0. (2.11)

Also,

u′00 = u′ = R. (2.12)

Equations (2.10)–(2.12) furnish recurrence relations which enableu′ij to be expressed
in terms ofx, t, u and the derivatives ofu for any i > 0, j > 0. The factorδ−1 makes the
expressions foru′ij grow with i andj in a very cumbersome manner.

In the case of infinitesimal Lie point transformations in which

P(x, t, u) = x + εP ∗(x, t, u)+O(ε2)

Q(x, t, u) = t + εQ∗(x, t, u)+O(ε2)

R(x, t, u) = u+ εR∗(x, t, u)+O(ε2)

(2.13)

the forms ofJ andδ in (2.2) and (2.3) simplify to

J = 1+ ε(P ∗x +Q∗t + R∗u) (2.14)

δ = 1+ ε(P ∗X +Q∗T ) (2.15)

to the first order ofε. The recurrence relations corresponding to (2.10)–(2.12) are

u′ij = (u′ij−1)T − ε[P ∗T (u
′
ij−1)X +Q∗T (u′ij−1)T ] j > 1, i > 0 (2.16)

u′ij = (u′i−1j )X − ε[P ∗X(u
′
i−1j )X +Q∗X(u′i−1j )T ] i > 1, j > 0 (2.17)

u′00 = u+ εR∗ (2.18)

to the first order inε. These of course lead to considerably less cumbersome forms ofu′ij
than those obtained from (2.10)–(2.12).

3. Properties of the transformations

Under the point transformation (2.1) each derivative ofu′(x ′, t ′), that is u′ij , i >
0, j > 0, may be expressed, via the recurrence relations (2.10)–(2.12), as a function of
x, t, u and the derivatives ofu. A number of results concerning the functional form
of u′pq(x, t, u, . . . , uij , . . .) are presented in this section. These results concern point
transformations with, as yet, no reference to PDEs. In section 4, the results of section 3
are necessary to study the nature of point transformations which perform specific changes
to PDEs. Of particular interest, for example, are the cases ofno change which correspond
to symmetries of the equations. The proofs of the results are generally inductive and use
the recurrence relations (2.10)–(2.12). They have been relegated to appendix A.

Lemma 3.1.If x ′ = P(x, t, u), t ′ = Q(x, t, u), u′ = R(x, t, u)
n∑
i=0

zi
∂u′pq
∂uij

=
{
(−1)p(QX − zQT )

p(PX − zPT )qJ δ−p−q−1 n > 0

Ru n = 0
(3.1)

wherei + j = p + q = n > 0.
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As an illustrative example consider the point transformation

x ′ = u−1 t ′ = t u′ = xu−1

which is an element of a cyclic group of finite transformations of order 3. Direct calculation
gives

PX = −u−2ux PT = −u−2ut QX = 0 QT = 1 J = u−3

δ = −u−2ux

and application of lemma 3.1 forp = 0 andq = 2 produces

z2∂u
′
02

∂u20
+ z∂u

′
02

∂u11
+ ∂u

′
02

∂u02
= −u−1u−3

10 (z
2u2

01− 2zu10u01+ u2
10)

using the numeric subscript notation.
Comparing coefficients ofz2, z andz0 now leads to the following results

∂u′t ′t ′
∂uxx

= −u−1u−3
x u

2
t

∂u′t ′t ′
∂uxt

= 2u−1u−2
x ut

∂u′t ′t ′
∂utt

= −u−1u−1
x .

These results may be readily checked against the actual expression foru′t ′t ′ ,

u′t ′t ′ = −u−1u−3
x (u

2
t uxx − 2uxutuxt + u2

xutt ).

A number of useful results are contained in lemma 3.1 and are described in the following
four corollaries. First the coefficient ofzi in (3.1) gives the following.

Corollary 3.1.

∂u′pq
∂uij

= (−1)p+i
min{i,p}∑

s=max{0,p−j}

(
p

s

)(
q

i − s
)
P
j−p+s
X P i−sT Q

p−s
X Qs

T J δ
−p−q−1 (3.2)

wherei + j = p + q > 1.

The coefficient ofzp in lemma 3.1, or settingi = p andj = q in corollary 3.1, gives

Corollary 3.2.

∂u′pq
∂upq

=
p∑

s=max{0,p−q}

(
p

s

)(
q

p − s
)
P
q−p+s
X P

p−s
T Q

p−s
X Qs

T J δ
−p−q−1 (3.3)

wherep + q > 1.

The coefficient ofzn andz0 in lemma 3.1 give, respectively:

Corollary 3.3.

∂u′pq
∂up+q0

= (−1)qP qT Q
p

T J δ
−p−q−1 p + q > 1 (3.4)

∂u′pq
∂u0p+q

= (−1)pP qXQ
p

XJδ
−p−q−1 p + q > 1. (3.5)

For point transformations (2.1) restricted tot ′ = Q(t), lemma 3.1 becomes:

Corollary 3.4. If Q(x, t, u) is independent ofx andu,

∂u′pq
∂uij

=

 (−1)p+i
(

q

i − p
)
P
p+q−i
X P

i−p
T Q

p
t J δ

−p−q−1 i > p

0 i < p

(3.6)

wherei + j = p + q > 1.
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Lemma 3.2.If x ′ = P(x, t, u), t ′ = Q(x, t, u), u′ = R(x, t, u) then

∂m+nu′10

∂um10∂u
n
01

= (−1)nCmn(nαQX +mβQT )δ
−m−n−1 (3.7)

∂m+nu′01

∂um10∂u
n
01

= (−1)mCmn(nαPX +mβPT )δ−m−n−1 (3.8)

wherem+ n > 1, Cmn = (m+ n− 1)! αm−1βn−1J , depends only onx, t andu and where
α = PtQu − PuQt andβ = PxQu − PuQx .

When using lemma 3.2 for given values ofm andn the formulae should be simplified
before the particular forms ofα andβ, etc, are inserted. For example, whenn = 0, β may
be cancelled. This pre-empts a potential difficulty of dealing withβ−1 whenβ = 0. We
note that, whenm+ n = 1, lemma 3.2 becomes lemma 3.1, corollary 3.3 withp + q = 1.

As an example we consider again the cyclic transformationx ′ = u−1, t ′ = t, u′ = xu−1.
Thus α = u−2, β = 0 andCmn = (m + n − 1)!u−2m−1βn−1. We note thatβ has been
retained inCmn for cases where cancellation ofβ occurs. Then, for example, equation (3.8)
of lemma 3.2 gives

∂m+nu′01

∂um10∂u
n
01

=


0 n > 1, n+m > 1

u−1(−u10)
−m−1 n = 1, m > 0

u−1(−u10)
−m−1u01 n = 0, m > 1

which is consistent with the relation

u′t ′ = −u−1u−1
x ut .

Lemma 3.3.If x ′ = P(x), t ′ = Q(t), u′ = R(x, t, u) then

∂2u′pq
∂uij ∂ukl

=


(
p

i

)(
q

j

)
P−px Q

−q
t Ruu i + k = p, j + l = q

0 i + k > p or j + l > q.
(3.9)

The previous example of a cyclic transformation is not applicable here since for example,
x ′ = u−1 is not of the formP(x). Instead we consider the reciprocal (cyclic of order 2)
transformation

x ′ = x t ′ = t−1 u′ = xu−1.

Here we have

Px = 1 Qt = −t−2 J = xt−2u−2 δ = −t−2

so that lemma 3.3 gives, wheni + k = p andj + l = q,

∂2u′pq
∂uij ∂ukl

= (−1)q
(
p

i

)(
q

j

)
2xt2qu−3.

A particular case is

∂u′21

∂u11∂u10
= −4xt2u−3

which is consistent with the full expression foru′21 (or u′x ′x ′t ′ ),

u′x ′x ′t ′ = t2u−4(xu2uxxt − 2xuutuxx − 4xuuxuxt + 2u2uxt + 6xu2
xut − 4uuxut ).
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The above results all apply to finite transformations. However, since infinitesimal
transformations have such importance in the study of PDEs, the corresponding versions
of the above lemmas are given below.

For the infinitesimal transformation (2.13) lemma 3.1 condenses to

∂u′pq
∂up−1q+1

= −εpQ∗X p > 1 (3.10)

∂u′pq
∂up+1q−1

= −εqP ∗T q > 1 (3.11)

∂u′pq
∂upq

= 1− ε((p + 1)P ∗X + (q + 1)Q∗T − P ∗x −Q∗t − R∗u) p + q > 1 (3.12)

∂u′00

∂u00
= 1+ εR∗u (3.13)

∂u′pq
∂uij

= 0 i + j = p + q > 0 (i, j) 6= (p − 1, q + 1)

(i, j) 6= (p + 1, q − 1) (i, j) 6= (p, q) (3.14)

to orderε. In the case of lemma 3.2, equation (3.7) simplifies to

∂2u′10

∂u2
10

= −2εP ∗u
∂2u′10

∂u10∂u01
= −εQ∗u (3.15)

∂u′10

∂u10
= 1− ε(2P ∗X +Q∗T − P ∗x −Q∗t − R∗u)

∂u′10

∂u01
= −εQ∗X (3.16)

to orderε. For all other derivatives

∂m+nu′10

∂um10∂u
n
01

= O(ε2). (3.17)

The corresponding derivatives ofu′01 as given by (3.8) in the finite case may be obtained
from (3.15)–(3.17) by exchangingx andt , X andT andP andQ. Finally the infinitesimal
form of lemma 3.3 is, to orderε,

∂2u′pq
∂uij ∂ukl

=

 ε
(
p

i

)(
q

j

)
R∗uu i + k = p, j + l = p

0 i + k > p or j + l > q.
(3.18)

We close this section with a conjecture concerning transformations in which the new
independent variablesx ′ and t ′ are defined solely in terms ofx and t .

Conjecture 3.1.If x ′ = P(x, t), t ′ = Q(x, t), u′ = R(x, t, u) then

∂nu′pq
∂u

n1
i1j1
. . . ∂u

nm
imjm

= (−1)q
θ=min{i,p}∑

s=max{0,p−j}
CsP

p−j+s
x P i−st Qp−s

x Qs
t δ
−p−q ∂

nR

∂un
(3.19)

wherei =∑m
r=1 nrir , j =

∑m
r=1 nrjr , i + j = p + q and whereCs is a non-zero constant

depending on all of their , jr , nr , and also onp andq.

The precise form ofCs is as yet unknown. The conjecture is supported by the fact
that it agrees with lemma 3.1, corollary 3.1 forn = 1 and by the fact that it is valid for a
number of tested cases.
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4. Form-preserving transformations of PDEs

4.1. Basic results

We start with a wide class of PDEs for which general deductions about the forms of
P(x, t, u) and Q(x, t, u) can quickly be made. These will be useful when discussing
the following more restricted classes of equations. Also a general comment about the
existence of hodograph-type transformations can be made. The results are summarized in
the following theorem.

Theorem 4.1.The PDEupq = H(x, t, u, {uij }) is related tou′pq = H ′(x ′, t ′, u′, {u′ij }),
where{uij } and{u′ij } respectively denote all derivatives ofu andu′ of orderi+ j < p+ q,
are related by the point transformationx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ = R(x, t, u)

in the cases: (a)p 6= 0, q 6= 0 (b) p 6= 0, q = 0 (c) p = 0, q 6= 0 only if (a)
{P = P(x),Q = Q(t)} or {P = P(t),Q = Q(x)}, (b) Q = Q(t), (c) P = P(x),
respectively.

Proof. For the proof of theorem 4.1 we consider the fate of the highest-order derivative of
u′pq = H ′ under the point transformation. Consider lemma 3.1, corollary 3.3,p + q > 1,
that is

∂u′pq
∂up+q0

= (−1)qQp

T P
q

T J δ
−p−q−1 (3.4)

∂u′pq
∂u0p+q

= (−1)pQp

XP
q

XJδ
−p−q−1. (3.5)

In case (a) neitherp = 0 norq = 0 so that both of these expressions must vanish in order
for u′pq to generateupq alone of orderp+q. Any lower-order derivatives ofu′ which occur
in H ′ transform to derivatives ofu of order less thanp + q. Hence,QTPT = QXPX = 0.
Hence, either{P = P(x),Q = Q(t)} or {P = P(t),Q = Q(x)} as required.

In case (b), in whichp 6= 0 andq = 0, only the expression in (3.5) must vanish, so
thatQX = 0 and henceQ = Q(t) as required.

Case (c) follows by symmetry (x ↔ t, P ↔ Q,X↔ T , p↔ q) from case (b). �

A corollary of this is that for a hodograph-type transformation in which either or each
of x ′ and t ′ has a dependence onu, and u′ has a dependence on either or each ofx, t ,
only cases (b) and (c) can apply. This gives a simple test for the possible existence of a
hodograph-type point transformation for PDEs with two independent variables, namely:

a hodograph-type transformation can only exist if either there are at least two highest-
order derivatives present, or the single highest order is pure, not mixed.

4.2. Equations of the formu01 = H(x, t, u, . . . , un0)

Spurred on by the result of Tu [11] that infinitesimal point transformations for equations of
this type withn > 2 must take the formt ′ = t + εf (t) + o(ε2) (no x or u dependency)
and also by the fact that all point transformations (discrete or continuous) connecting two
different Burgers-type equations (Kingston and Sophocleous [1]) were also of this form,
Kingston [12] generalized Tu’s result accordingly. He also went further to show that for a
wide subclass of these equations it is necessary forx ′ = P(x, t) (no u dependency). These
results are incorporated in theorems 4.2a, b.
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For a subclass of these evolution equations in whichH,H ′ have no explicit dependence
on t and t ′ and for point transformations restricted tox ′ = P(x, t), t ′ = Q(x, t). Kalnins
and Miller [13] described a method of using the Lie point symmetries of one equation to
obtain a point transformation connecting that equation to another. For example, they use
the symmetryt ′ ∂

∂x ′ + ∂
∂t ′ − ∂

∂u′ of the KdV equationu′t ′ = u′x ′x ′x ′ + u′u′x ′ to find the point
transformationx ′ = x + t2/2, t ′ = t, u′ = u − t relating the KdV equation to the new
equation

ut = uxxx + uux + 1.

For this particular example withH = uxxx + uux + 1 andH ′ = u′x ′x ′x ′ + u′u′x ′ we note that
theorems 4.2a, b predict that ifP andQ exist they must be of the formsP(x, t) andQ(t),
in accordance with the above results.

Theorem 4.2a.The point transformationx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ = R(x, t, u)

transforms

u′01 = H ′(x ′, t ′, u′, . . . , u′n0) (4.1)

to

u01 = H(x, t, u, . . . , un0) (4.2)

wheren > 2 if and only ifQ = Q(t) and

H = J−1Qt(PXQtH
′ + PtRX − PXRt). (4.3)

Proof. Theorem 4.1 applies withp = 2 andq = 0, so thatQ = Q(t). Eachu′i0 in H ′

transforms to an expression inx, t, u, u10, . . . ui0, that is not derivatives ofu are introduced.
Equation (4.1) thus transforms to the form (4.2) and the form ofH is determined, with no
further conditions onP,Q andR, from (4.3) for anyH ′. �

Theorem 4.2b. If, in theorem 4.2a,H and H ′ are polynomials (non-negative integral
powers) inu10, . . . , un0 andu′10, . . . , u

′
n0 respectively (dependency onx, t, u and x ′, t ′, u′

unspecified) thenP = P(x, t).

Proof. The proof of theorem 4.2b is given in [12].

These results have been used, for example, to aid the classification of point
transformations within the following classes of PDEs: generalized Burgers equations
[1]; radially symmetric nonlinear diffusion equation [14]; generalized nonlinear diffusion
equations [15]. Of course these point transformations necessarily include all invariant
continuous Lie point symmetries of members of each class. They also include additional
discrete symmetries. For example, Pallikaros and Sophocleous [15] studied the equations

ut = xm(xnf (u)ux)x
wherem andn are any real constants. In particular the discrete reciprocal symmetries were
found:

ut = x(x−1u−2ux)x x ′ = 2

x
t ′ = t u′ = 1

2x
2u

ut = x(u−2ux)x x ′ = 1

x
t ′ = t u′ = xu.



1606 J G Kingston and C Sophocleous

In each of these two examples we note that the conditions of theorems 4.2a, b are met and,
indeed,x ′ = P(x, t) and t ′ = Q(t) as predicted.

WhenH andH ′ are not of the polynomial form described in theorem 4.2b the result
x ′ = P(x, t) does not necessarily follow as can be illustrated by thepure hodograph
transformationx ′ = u, t ′ = t, u′ = x in which one independent variablex and the dependent
variable u change roles. Clarksonet al [16] used this transformation and anextended
hodograph transformationto analyse classes of linearizable PDEs. The pure hodograph
transformation leaves bothut = (uxx) 1

3 and the third-order potential Harry–Dym equation

ut = (u−
1
2

x )xx invariant. In each caseH contains negative or fractional (or both) powers of
a derivative ofu, sox ′ = u is consistent with theorem 4.2b.

Note thatx ′ = 1
x
, t ′ = 1

t
, u′ = u

x
leavesut = (uxx)−1/3 invariant so the condition onH

in theorem 4.2b is not a necessary condition forx ′ = P(x, t).

4.3. Equations of the formu11 = H(x, t, u, . . . , un0)

This class of PDEs includes, for example, Liouville’s equationuxt = ex , the Tzitzeica
equationuxt = e−u − e−2u (also known as the Dodd–Bullough equation) and the potential
sine-Gordon equationuxt = u

√
1− u2

x .

Theorem 4.3a (n > 3). The point transformationx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ =
R(x, t, u) transforms

u′11 = H ′(x ′, t ′, u′, . . . , u′n0) (4.4)

into

u11 = H(x, t, u, . . . , un0) (4.5)

wheren > 3, if and only if P = P(x, t),Q = Q(t), R = A(t)u+ B(x, t) and

H = A−1PxQtH
′ + u20P

−1
x Pt + u10((P

−1
x Pt )x − A−1At)− A−1(Bt − P−1

x PtBx)x. (4.6)

Proof. From theorem 4.1 withp = n andq = 0 it follows thatQ = Q(t). Relation (2.11)
simplifies tou′i0 = P−1

x (u′i−10)X, i > 1, so that not derivatives ofu arise fromu′i0, i > 0,
andH ′ transforms to the formH .

Hence, equation (4.4) only transforms to (4.5) ifu′11 gives rise to no terms inu02 or u01.

Thus ∂u′11
∂u01
≡ 0, so that ∂

∂u01
(
∂u′11
∂u20

) = −QtPuJ δ
−3 ≡ 0, using equation (3.4) of lemma 3.1,

corollary 3.3, withp = q = 1. Hence,P = P(x, t). Equation (4.4) now transforms to
equation (4.5) andH is given in terms ofH ′, whateverH ′, by equation (4.6). �

As an example of the use of theorem 4.3a all point transformations which are symmetries
of the equation

uxt = uxxx + 2uxuxx (4.7)

will be found. This equation may be recognized as thex-derivative of the potential Burger’s
equationut = uxx + u2

x so that we can expect some Lie point symmetries to exist, at least.
Using the forms ofP,Q andR in the theoremH ′ = u′30+ 2u′10u

′
20 may be expressed

in terms ofx, t, u, u10, u20 andu30 and then substituted into condition (4.6). Equation (4.6)
then becomes a polynomial inu10, u20 andu30. The coefficients ofu10u20, u

2
10, u30 andu20

give respectivelyA = 1, Pxx = 0,Qt = P 2
x , Bx = − 1

2P
−1
x Pt and the remaining terms give
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PxPtt = 2PtPxt . The forms ofP,Q andB are now easily determined and the possible
symmetries of (4.7) may be represented as two classes of multiparameter transformations

(1) x ′ = c1x + c3

t + c2
+ c4 t ′ = −c

2
1

t + c2
+ c5 u′ = u+ (c1x + c3)

2

4c2
1(t + c2)

+ b(t)

(2) x ′ = c1x + c2t + c3 t ′ = c2
1t + c4 u′ = u− 1

2c
−1
1 c2x + b(t).

Here c1, . . . , c5 are arbitrary constants andb(t) is an arbitrary function oft which occurs
as a translation ofu and is a reminder that (4.7) may be written in terms ofux .

These two classes of transformations contain the Lie point symmetries of (4.7) and also
a discrete symmetryT which is an element of a finite cyclic group of order 4 and is obtained
by settingc1 = 1, c2 = c3 = c4 = c5 = b(t) = 0 in class (1):

T : x ′ = xt−1 t ′ = −t−1 u′ = u+ 1
4x

2t−1.

T 2 represents the reflectionx ′ = −x, t ′ = t, u′ = u andT 4 is the identity transformation.

Theorem 4.3b(n = 2). The point transformationsx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ =
R(x, t, u) which transform

u′11 = H ′(x ′, t ′, u′, u′10, u
′
20) (4.8)

to

u11 = H(x, t, u, u10, u20) (4.9)

belong to the two categories:
(a) P,Q,R andH restricted as in the conditions for theorem 4.3a;
(b) P = P(x, t),Q = Q(x, t), R = A(x, t)u + B(x, t), H ′ = −PxQ−1

x u
′
20 −

Aδ−1(A−1Q−1
x δ)xu

′
10 + G′(x ′, t ′, u′), H = Q−1

x Qtu20 + A−1((AQ−1
x Qt)x − At)u10 +

G(x, t, u). For any G′(x ′, t ′, u′) the form of G(x, t, u) is then determined by the
transformation without further condition. Also,δ = PxQt − PtQx .

The proof of theorem 4.3b is given in appendix B.
As an illustration consider the discrete (reciprocal) transformation

x ′ = x−1 t ′ = x2t u′ = ux−1.

This belongs to case (b) and corresponds to

P(x, t) = x−1 Q(x, t) = x2t A(x, t) = x−1 B(x, t) = 0 δ = −1.

The theorem shows that the equation

u′x ′t ′ = 1
2x
′t ′−1

u′x ′x ′ +G′(x ′, t ′, u′)
transforms into

uxt = 1
2xt
−1uxx +G(x, t, u)

whereG is defined for anyG′ by

G(x, t, u) = xG′(x−1, x2t, ux−1).

For example, the equationuxt = 1
2xt
−1uxx + tu3 is invariant under this reciprocal

transformation.

Theorem 4.3c(n = 0, 1). The point transformationsx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ =
R(x, t, u) which transform

u′11 = H ′(x ′, t ′, u′, u′10) (4.10)
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into

u11 = H(x, t, u, u10) (4.11)

belong to one of the two categories (whenn = 0 setA constant in (a) and (b)):
(a) P = P(x),Q = Q(t), R = A(t)u+ B(x, t)

H = A−1PxQtH
′ − A−1Atu10− A−1Bxt (4.12)

(b) P = P(t),Q = Q(x), R = A(x, t)u + B(x, t), H ′ = A−1AxQ
−1
x u
′
10 + G′(x ′, t ′, u′),

H = −A−1Atu10+ A−1PtQxG
′ − u(A−1At)x − (A−1Bt)x .

The proof of theorem 4.3c is deferred to appendix B.
In particular these point transformations include continuous Lie point transformations

which leave equation (4.10) invariant. For example the Liouville equationuxt = eu

possesses an infinite-dimensional symmetry which may be written in the finite form

x ′ = P(x) t ′ = Q(t) u′ = u− ln(PxQt)

where P(x) and Q(t) are arbitrary differentiable functions andPxQt 6= 0. This is in
accordance with theorem 4.3c, case (a), withA(t) = 1 andB(x, t) = − ln(PxQt).

4.4. Equations of the formu02 = H(x, t, u, . . . , un0)

These equations include many models of physical phenomena, especially wave-type motions.
Examples include the (linear) axially symmetric wave equationutt = uxx+ 1

x
ux , the equation

ut = −uxuxx which arises as a model of steady (heret represents a spatial coordinate)
transonic gas-dynamic flow, the family of nonlinear equationsutt = (f (u)ux)x and the
Boussinesq-type equation

utt = uxx − 2(u3)xx + uxxxx. (4.13)

Theorem 4.4a(n > 3). The point transformationx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ =
R(x, t, u) transforms

u′02 = H ′(x ′, t ′, u′, . . . , u′n0) (4.14)

to

u02 = H(x, t, u, . . . , un0) (4.15)

wheren > 3 if and only if P = P(x),Q = Q(t) andR = A(x)Q1/2
t u+ B(x, t). Also

H = A(x)−1Q
− 3

2
t (Q3

t H
′ +QttRt −QtRtt ). (4.16)

Proof. From theorem 4.1, withp = n andq = 0, it follows thatQ = Q(t). Relation (2.11)
simplifies tou′i0 = P−1

X (u′i−10)X, i > 1, so it is evident that the transformedu′i0, i > 0,
involves not derivatives ofu. Hence, (4.14) can only be transformed into (4.15) ifu′02
does not give rise to either of the termsu11 or u01. However, lemma 3.1, corollary 3.4 gives
∂u′02
∂u11
= −2PXPT Jδ−3, and sincePX 6= 0 (otherwiseP andQ are functionally dependent)

it follows thatPT = 0 so thatP = P(x).
Lemma 3.3 now gives∂

2u′02

∂u2
01
= RuuQ−2

t = 0 showing thatR is linear inu. Further∂u
′
02

∂u01
=

Q−3
t (2QtRut −QttRu) = 0, so thatR is necessarily of the formR = A(x)Q1/2

t u+B(x, t).



On form-preserving point transformations of PDEs 1609

With these forms ofP,Q andR equation (4.14) is transformed to equation (4.15) and
H is given by (4.16). �

As an example, theorem 4.4a is now used to classify the point symmetries of the
Boussinesq-type equation (4.13). The restricted nature of the possible point transformations
in the theorem suggests that the variety of symmetries will be limited. When (4.16) is
expanded the coefficients ofu40 and u30 give respectively thatP,Q are linear functions
andA is constant. This simplifies (4.16) considerably and theuu20 term is then seen to
imply thatB(x, t) = 0. It then rapidly follows that all point symmetries of

utt = uxx − 2(u3)xx + uxxxx
are included in the transformation

x ′ = c1x + c2 t ′ = c3t + c4 u′ = c5u

wherec2, c4 are arbitrary constants corresponding to continuous translations ofx andt , and
c2

1 = c2
3 = c2

5 = 1 which gives all combinations of the three discrete reflection symmetries:
x ′ = −x; t ′ = −t ; u′ = −u. These reflections are, of course, clearly visible in the equation.

Theorem 4.4b(n = 2). Point transformationsx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ =
R(x, t, u) which transform

u′02 = H ′(x ′, t ′, u′, u′10, u
′
20) (4.17)

into

u02 = H(x, t, u, u10, u20) (4.18)

whereH ′
u′20
6= 0, belongs to one of the three categories:

(a) P,Q,R andH restricted as in the conditions for theorem 4.4a;
(b) P = P(t),Q = Q(x), H ′ = H ′(x ′, t ′, u′, u′20 + λu′210 + µu′10), where λ =

−RuuR−2
u , µ = P−2

t R−2
u (2PtRtRuu−2PtRuRut+PttR2

u), H = H(x, t, u, u20+RuuR−1
u u

2
10+

(2RuxR−1
u −QxxQ

−1
x )u10);

(c) P = P(x, t),Q = Q(x, t), R = A(x, t)u + B(x, t), H ′ = PxPtQ
−1
x Q

−1
t u
′
20 +

G′1(x
′, t ′)u′10+G′2(x ′, t ′, u′), H = P−1

x PtQ
−1
x Qtu20+G1(x, t)u10+G2(x, t, u).

The proof of theorem 4.4b is given in appendix B.
The one-dimensional nonlinear wave equation

utt = (f (u)ux)x
wheref (u) is not constant, is an example of equation (4.18). Theu2

x term which arises
in this equation excludes case (c) since neitherH norH ′ can take this form. The theorem
therefore predicts that all point transformations between such equations must be such that
x ′ and t ′ take one of the two forms (a)x ′ = P(x), t ′ = Q(t), (b) x ′ = P(t), t ′ = Q(x).
Ames et al [17] classified the Lie point symmetries of this class of equations and found
that, depending on the nature off (u), the symmetry Lie algebra is 3, 4 or 5 dimensional.
All of these are of type (a). As well as these continuous symmetries there is a discrete
symmetry for generalf (u) in which x and t change roles (see for example [18]). This is
of type (b). For further study, the theorem could be used to classify all point symmetries
including all discrete symmetries as well as the known continuous symmetries.

Another example is provided by the symmetry 2xt ∂
∂x
+ (x2+ t2) ∂

∂t
−ut ∂

∂u
of the axially

symmetric wave equationutt = uxx + 1
x
ux . The finite form of this isx ′ = c(x, t)−1x, t ′ =
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c(x, t)−1(t + α(x2− t2)), u′ = c(x, t) 1
2u wherec(x, t) = 1− 2αt − α2(x2− t2). This one-

parameter family of point transformations belongs to the class described in theorem 4.4b,
case (c), in whichA(x, t) = c(x, t) 1

2 andB(x, t) = 0.
We know of no studies of the full (discrete as well as continuous) point symmetry

groups of equations or families of equations of the type of section 4.4.

Theorem 4.4c(n = 1). Point transformationsx ′ = P(x, t, u), t ′ = Q(x, t, u), u′ =
R(x, t, u) which transform

u′02 = H ′(x ′, t ′, u′, u′10) (4.19)

into

u02 = H(x, t, u, u10) (4.20)

whereH ′
u′10
6= 0, belong to one of the three categories:

(a) P,Q,R andH restricted as in the conditions for theorem 4.4a;
(b) P = P(x),Q = Q(x, t),Qx 6= 0, R = A(x, t)u + B(x, t), H ′ = G′1(x ′, t ′)u′10+

G′2(x
′, t ′, u′), H = G1(x, t)u10+G2(x, t, u), where

G′1 = PxQ−1
x Q

−1
t (Q

−1
t Qtt − 2A−1At)

G1 = Q−1
x Qt(Q

−1
t Qtt − 2A−1At)

G2 = A−1Q2
t G
′
2+ A−2Q−1

x (F1u+ F2)

F1 = QttAAx − 2QtAxAt +Qx(2A
2
t − AAtt )

F2 = QttABx − 2QtBxAt +Qx(2AtBt − ABtt )
(c) P = P(x),Qu 6= 0,Q = f (ξ), R = g(ξ) + A(x, t)f ′(ξ)1/2, ξ = A1/2

t u + B(x, t),
H ′ = G′1(u′10+G′)3+G′2, H = G1(u10+G)3+G2, where

G′1 = A−3
t P

3
x f
′(ξ)−3G1

G′2 = f ′(ξ)−1((f ′(ξ)−
1
2 )′′A+ (g′(ξ)f ′(ξ)−1)′)

G2 = −A
1
2
t ((

1
2A
− 3

2
t Att )tu+ (BtA−1

t )t )

G′ = AxP−1
x f ′(ξ)

G = 1
2A
−1
t Axtu+ A

− 1
2

t Bx.

In the aboveA,B, f andg are arbitrary (suitably differentiable) functions.

The proof of theorem 4.4c is deferred to appendix B.
The class of equations (4.20) considered in theorem 4.4c is done so for completeness

of the study in section 4.4. Perhaps a more natural form of (4.20) is, switchingx andt , the
class of evolution equations

u01 = F(x, t, u, u20)

which is a subclass of the equations studied in section 4.2. However, (4.20) is developed
further here.

In all three possible cases it is noted thatx ′ is of the formP(x). The form oft ′ changes
from Q(t) in (a) toQ(x, t) in (b) and finally toQ(x, t, u) in (c). The latter case offers the
possibility of hodograph-type transformations in which there is some interchange between
dependent and independent variables. The nature of the functionH(x, t, u, u10) differs in
the three cases. In (a) the form ofH can be very varied whereas in (b)H has to be



On form-preserving point transformations of PDEs 1611

linear in u10. Case (c) is perhaps the most interesting since as well as a more interesting
transformation the functionsH andH ′ are cubic functions ofu10 andu′10 respectively.

An example is therefore given of case (c) by selecting

P(x) = x f (ξ) = ξ g(ξ) = 0 A(x, t) = −t−1 B(x, t) = 0

which gives

G = G′ = G2 = G′2 = 0 Q = ut−1, R = −t−1

and implies thatu′t ′t ′ = G′1u
′3
x ′ transforms intoutt = G1u

3
x where G1(x, t, u) =

t−6G′1(x, ut
−1,−t−1)

In particular, choosingG′1(x
′, t ′, u′) = (t ′u′)−2 givesG1(x, t, u) = (tu)−2. Thus, the

result follows that the equation

utt = (tu)−2u3
x

has the discrete symmetry

x ′ = x t ′ = ut−1 u′ = −t−1.

This transformation belongs to a cyclic group of order 3.

5. Conclusion

We have drawn attention to the fact that in addition to the important Lie symmetry groups
of PDEs there may also be discrete finite groups of point transformations which, with
the Lie groups, form the complete symmetry group under point transformations. In the
introduction some reasons were listed for why it may be rewarding to search for discrete
point transformations. To this end we have studied three common classes of equations
restricted to one dependent variable and two independent variables and deduced results,
summarized in theorems, concerning the nature of connecting point transformations.

At present there appear to be very few complete analyses of full symmetry groups
(discrete and continuous) of PDEs, unlike the Lie symmetry groups for which a large
catalogue (see, for example, Ibragimov [18]) exists. It is relatively easy to construct PDEs
artificially with given finite symmetry groups. For example,ut = (x2uuxx)

1/3 is invariant
underx ′ = 1/u, t ′ = t, u′ = x/u, which transformation forms a cyclic group of order 3.
What variety of finite symmetry groups exist within PDEs of practical importance is largely
an open question.

For systems of equations with two or more independent variables the situation is the
same regarding the complete knowledge of the full group of invariant transformations,
discrete transformations included. The self-consistent system of two equations

9xxt = 9x9xt/9 + (9xx9xt + λ99t)/9x
9xtt = 9t9xt/9 + (9tt9xt + λ−199x)/9t

is invariant under the point transformation (reciprocal)9 → 1/9, x → −x, t → −t .
These two equations arise from the linear representation of the Dodd–Bullough equation
uxt = eu − e−2u, namely

9xx = ux9x − λe−u9t 9xt = eu9 9tt = −λ−1e−u9t + ut9t
9 being the eigenfunction.

Also there are useful point transformations between different equations with more than
two independent variables. For example the Kadomtsev–Petvialishvili (KP) equation

(u′t ′ + 6u′u′x ′ + u′x ′x ′x ′)x ′ = −3α2u′y ′y ′
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and Johnson’s equation [19](
ut + 6uux + uxxx + u

2t

)
x
= −3α2uyy/t

2

are connected by the point transformation

x ′ = x − yt/(12α2) y ′ = yt t ′ = t u′ = u.
This enables solutions of Johnson’s equation to be constructed from solutions of the K-P
equation.

Further study, along the lines of this paper, of systems of equations or a single equation
with more than two independent variables may therefore be useful.
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Appendix A

In this appendix, we give the proofs of lemmas 3.1–3.3.

Proof of lemma 3.1. First note thatu′pq may be expressed as a function ofx, t, u and
the derivatives ofu up to orderp + q. Hence, both(u′pq)X and (u′pq)T will be linear in
(p + q + 1)th-order derivatives ofu. Specifically, if i + j = p + q + 1,

∂(u′pq)X
∂uij

=


∂ ′upq
∂ui−1j

i > 1

0 i = 0

(A.1)

∂(u′pq)T
∂uij

=


∂ ′upq
∂uij−1

j > 1

0 j = 0.

(A.2)

We use induction onn. For p > 1 andi + j = p + q = n+ 1, n > 1, relation (2.11)
gives

n+1∑
i=0

zi
∂u′pq
∂uij

=
n+1∑
i=0

zi
∂

∂uij
(δ−1(QT (u

′
p−1q)X −QX(u

′
p−1q)T ))

= δ−1

(
n+1∑
i=1

ziQT

∂u′p−1q

∂ui−1j
−

n∑
i=0

ziQX

∂u′i−1j

∂uij−1

)
using (A.1) and (A.2) and noting thati + j > 2 and thatδ,QX andQT involve only first
derivatives ofu,

= −δ−1(QX − zQT )

n∑
i=0

zi
∂u′p−1q

∂uij−1

noting thatj does not attain 0,

= (−1)p(QX − zQT )
p(PX − zPT )qJ δ−p−q−1 (A.3)
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using the induction hypothesis. Equation (A.3) is lemma 3.1 withn+ 1 in place ofn.
For q > 1 the corresponding steps, using (2.10) initially, gives exactly the same result

(A.3).
For the basis of the induction we need to consider the two cases forn = 1, namely

(p, q) = (1, 0) and (p, q) = (0, 1), and the casen = 0. When (p, q) = (1, 0) it is
necessary to show that

∂u′10

∂u01
+ z∂u

′
10

∂u10
= −(QX − zQT )J δ

−2

and it may be readily verified by direct calculations that

∂u′10

∂u01
= −QXJδ

−2 ∂u′10

∂u10
= QT Jδ

−2.

The case(p, q) = (0, 1) follows similarly. Finally, the basis is completed by the case
n = 0, for which

n∑
i=0

zi
∂u′pq
∂uij

= ∂u′00

∂u00
= Ru

as required. �

Proof of lemma 3.2.To prove (3.7) we use induction onm+n. Assuming that (3.7) is valid
for a givenm+ n > 1,

∂m+n+1u′10

∂um+1
10 ∂un01

= (−1)nCm,n(nαQuδ + (m+ n+ 1)α(nαQX +mβQT ))δ
−m−n−2

= (−1)nCm,nα(m+ n)(nαQX + (m+ 1)βQT ))δ
−m−n−2

using the fact thatαQx − βQt + γQu = ∂(Q,P,Q)

∂(x,t,u)
= 0,

= (−1)nCm+1,n(nαQX + (m+ 1)βQT )δ
−m−n−2.

Similarly it may be shown that

∂m+n+1u′10

∂um10∂u
n+1
01

= (−1)nCm,n+1((n+ 1)αQX +mβQT )δ
−m−n−2.

The basis of the induction consists of the two cases,(m, n) = (1, 0) and (m, n) = (0, 1),
for whichm+ n = 1. Lemma 3.1, corollary 3.3, or direct checking, shows that

∂u′10

∂u10
= QT Jδ

−2 ∂u′10

∂u01
= −QXJδ

−2

which conform to (3.7) as required.
Equation (3.8) follows from (3.7) by symmetry. Switchx and t , X andT , P andQ, α

andβ, andm andn, but note that, for these changes,Cm,n remains asCm,n. �

Proof of lemma 3.3.Induction may be used onp + q = n. Suppose (3.9) is true for all
p, q such thatp + q 6 n− 1 for a givenn and considerp + q = n.

For p > 1 (andq > 0, i > 0, j > 0),

∂u′pq
∂uij

= P−1
x

∂

∂uij

{
(u′p−1q)x +

∑
α,β

uα+1β

∂u′p−1q

∂uαβ

}
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using (2.11), which reduces tou′pq = P−1
x (u′p−1q)X, and (2.5),

= P−1
x

{(
∂u′p−1q

∂uij

)
x

+
∑
α,β

uα+1β

∂2u′p−1q

∂uij ∂uαβ
+ λ

}
whereλ = ∂u′p−1q

∂ui−1j
if i > 1; λ = 0 if i = 0.

Hence,

∂2u′pq
∂uij ∂ukl

= P−1
x

{
ξx + µ+

∑
α,β

uα+1β
∂ξ

∂uαβ
+ ν

}
where

ξ = ∂2u′p−1q

∂uij ∂ukl

µ = ∂2u′p−1q

∂uij ∂uk−1l
if k > 1 µ = 0 if k = 0

ν = ∂λ

∂ukl
= ∂2u′p−1q

∂ui−1j ∂ukl
if i > 1 ν = 0 if i = 0.

For i + k = p andj + l = q the induction hypothesis givesξ = 0 sincei + k > p− 1.
Also, using the expressions forµ andν given by (3.9) under the induction hypothesis gives
ξ = µ = ν = 0.

A symmetrical argument may be used whenq > 1 andp > 0 by using (2.6) in place
of (2.5) at the start of the above calculations.

Hence, a basis of the induction is provided byn = 0. Herep = q = 0 and (3.9) is
evidently true. �

Appendix B

In this appendix, we give the proofs of theorems 4.3b, 4.3c, 4.4b and 4.4c.

Proof of theorem 4.3b.Let E = u′11 − H ′, apply the transformation and then substitute
u11 = H . E will now, possibly, depend onx, t, u, u10, u01, u02 and u20, but for
equation (4.8) to transform into equation (4.9) we require thatE ≡ 0.

In particular,

∂E

∂u02
= ∂u′11

∂u02
− ∂H ′

∂u′20

∂u′20

∂u02
≡ 0

and from the two cases of lemma 3.1, corollary 3.3, equation (3.5), corresponding to
p = q = 1 andp = 2, q = 0, we have

−QXJδ
−3(PX +QXu

′
20) ≡ 0.

Hence, either (a)QX = 0, so thatQ = Q(t), or (b) QX 6= 0, H ′ = −PXQ−1
X u
′
20 +

G′2(x
′, t ′, u′, u′10).

For case (a) the same analysis applies as for theorem 4.3a.
For case (b) equation (4.8) is linear in the second-order derivatives ofu′ and this will

transform into an equation which is also linear in second-order derivatives. Thus

H = G1(x, t, u, u10)u20+G2(x, t, u, u10).



On form-preserving point transformations of PDEs 1615

Since ∂E
∂u20
= −δ−1Q−1

x Ru(G1Qx − Qt) ≡ 0, it follows that G1 = Q−1
x Qt . Next,

∂2E

∂u2
01
= −δ−2G′2u′10u

′
10

and ∂2E
∂u01∂u10

= −δ−1Ruu so that

G′2 = G′3(x ′, t ′, u′)u′10+G′(x ′, t ′, u′)
and

R = A(x, t)u+ B(x, t).
Also ∂2E

∂u2
10
= −δ−1AG2u10u10 ≡ 0, giving

G2 = G3(x, t, u)u10+G(x, t, u).
Solving ∂E

∂u10
≡ 0 and ∂E

∂u01
≡ 0 simultaneously gives

G3 = A−1((AQ−1
x Qt)x − At) G′3 = −Aδ−1(A−1Q−1

x δ)x.

Finally,E ≡ 0 provides a lengthy relation betweenG andG′ which serves to determine
G(x, t, u) corresponding to anyG′(x ′, t ′, u′). �

Proof of theorem 4.3c.From theorem 4.1 withp = q = 1 we have two cases to consider:
(a) P = P(x),Q = Q(t); (b) P = P(t),Q = Q(x). These are distinct cases since
equation (4.10) is not symmetric inx ′ and t ′.

For case (a)H ′ transforms into a function ofx, t, u and u10 so we require thatu′11
transforms into a function of the same variables, having replacedu11 by H . Hence,
∂u′11
∂u01
= δ−1(Ruuu10+ Rux) ≡ 0, giving

R = A(t)u+ B(x, t).
Equation (4.10) now transforms into (4.11) withH as stated in (4.12).

In case (b) letE = u′11− H ′ with H substituted foru11. Thus,E ≡ 0 for the given
transformation to exist. Hence,∂E

∂u10
= δ−1(Ruuu01+ Rut + RuHu10) ≡ 0, giving

R = A(x, t)u+ B(x, t)
and

H = −A−1Atu10+G(x, t, u).
Also ∂E

∂u01
= δ−1(Ax − AQxH

′
u′10
) ≡ 0, so that

H ′ = A−1AxQ
−1
x u
′
10+G′(x ′, t ′, u′).

Equation (4.10) now transforms into (4.11) withG being determined byG′ as

G(x, t, u) = A−1PtQxG
′ − u(A−1At)x − (A−1Bt)x

and the proof of case (b) and theorem 4.3c is complete forn = 1. Whenn = 0, H and
H ′ contain no derivatives ofu andu′ respectively and the further restrictionA = constant
must apply. �

Proof of theorem 4.4b.The expressionE = u′02 − H ′ becomes, as a result of the point
transformation, an expression inx, t, u and the derivatives ofu up to order 2. This
expression (= 0) is to be identified with equation (4.18). That is, ifu02 is replaced by
H in E then the resulting expression is required to be identically zero in terms of the
remaining seven variablesx, t, u, u10, u01, u20 andu11.
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In particular, ∂E
∂u11
= 0 and ∂E

∂u20
= 0, using the corollaries of lemma 3.1, give

QXQTH
′
u′20
= PXPT

and

H ′u′20
(Q2

T +Q2
XHu20) = P 2

T + P 2
XHu20.

These conditions show that all possibilities are included in the three cases: (a)
P = P(x),Q = Q(t); (b) P = P(t),Q = Q(x); and (c)

H ′ = PXPTQ−1
X Q

−1
T u
′
20+G′(x ′, t ′, u′, u′10) (B.1)

H = P−1
X PTQ

−1
X QT u20+G(x, t, u, u10). (B.2)

Case (a) follows exactly as in the proof of theorem 4.4a following the stage at which
P = P(x) and the results here are exactly as in the sole case of that theorem.

In case (b)u′02 transforms to an expression inx, t, u, u10 andu20, and thus contributes
to the right-hand side of equation (B.1). However,H ′(x ′, t ′, u′, u′10, u

′
20) introducesu01 via

u′10 and bothu01 andu02 via u′20. To obtain equation (4.18) it is therefore necessary that
u01 cancels out between the fourth and fifth parameters ofH ′. Noting that

u′01 = (u01Ru + Rt)P−1
t

u′02 = (u02PtRu + u2
01PtRuu + u01(2PtRtu − PttRu)+ PtRtt − PttRt )P−3

t

it is straightforward to show thatH ′ must take the functional form claimed in the theorem,
case (b). The termu01 now disappears fromH ′ and the transform ofu′02 = H ′ allows u02

to be expressed as a function ofx, t, u andu′02, the form ofH claimed in the theorem.
Finally in case (c) we haveH ′ andH given by (B.1) and (B.2).H is independent of

u01, so that (B.2) implies thatP−1
X PTQ

−1
X QT is independent ofu01. It readily follows that

P = P(x, t) andQ = Q(x, t). Considering againE = u′02− H ′, transformed, withu02

replaced byH , we have successively

∂2E

∂u10∂u01
= −QxQtR

2
uG
′
u′10u

′
10
δ−2 = 0

giving

G′ = G′1(x ′, t ′, u′)u′10+G′2(x ′, t ′, u′) (B.3)

∂2E

∂u2
01

= 2PxQ
−1
t Ruuδ

−1 = 0

giving

R = A(x, t)u+ B(x, t) (B.4)

and
∂2E

∂u2
10

= PxQ−1
t RuGu10u10δ

−1 = 0

giving

G = G1(x, t, u)u10+G2(x, t, u). (B.5)

Finally ∂2E
∂u01∂u

= 0 and ∂2E
∂u10∂u

= 0 give G′1u′ = 0 andG1u = 0 which, combined with
(B.3)–(B.5), completes the proof of case (c) of the theorem. �

Proof of theorem 4.4c.Theorem 4.1 withp = 0 andq = 2 givesP = P(x). As earlier we
setE = u′02− H ′, use the point transformation and then replaceu02 by H . ThusE can
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be expressed in terms ofx, t, u, u10 andu01 which expression must identically vanish. We
consider derivatives ofE1 = Eδ3. In particular, ∂2E1

∂u01∂u10
= 0 implies that

2QuH
′
u′10
− JP−2

x QXQ
−1
T H

′
u′10u

′
10
= 0. (B.6)

This enables the analysis to be separated into the three cases: (a)Q = Q(t); (b)
Q = Q(x, t),Qx 6= 0, H ′ = G′1(x ′, t ′, u′)u′10+G′2(x ′, t ′, u′); (c) Qu 6= 0.

Case (a) may be completed by noting that

∂E1

∂u01
= P 3

x (2u01QtRuu + 2QtRut −QttRu) = 0

which givesRuu = 0 and 2QtRut = QttRu. These give the form ofR(x, t, u) as claimed
in the theorem.E1 = 0 then shows howH is related toH ′ as displayed in theorem 4.4c
(a), the same as for theorem 4.4a and theorem 4.4b case (a).

In case (b) the identities∂
2E1

∂u2
10
= 0 and ∂2E1

∂u2
01
= 0 give respectively,

H = G1(x, t, u)u10+G2(x, t, u)

and

R = A(x, t)u+ B(x, t).
Then ∂E1

∂u10
= 0 and ∂E1

∂u01
= 0, together, lead to the forms ofG′1 andG1 claimed in the

theorem.E1 is now identically zero provided thatG2 andG′2 are related as stated.
For the third case (c) we consider equation (B.6) and expressu01 in terms ofu′01; u10

in terms ofu′10 andu′01. This gives

(u′10+G′)H ′u′10u
′
10
− 2H ′u′10

= 0 (B.7)

where

G′ = P−1
x Q−1

u (QxRu −QuRx). (B.8)

Equation (B.7) integrates to give

H ′ = G′1(x ′, t ′, u′)(u′10+G′)3+G′2(x ′, t ′, u′). (B.9)

Consideration of∂
4E1

∂u4
10
= 0 shows thatH(x, t, u, u10) is a cubic inu10, that is

H = G1(x, t, u)u
3
10+ F1(x, t, u)u

2
10+ F2(x, t, u)u10+ F3(x, t, u). (B.10)

E1 is now the sum of a cubic inu10 and a cubic inu01. For convenience we will denote
the coefficient ofum10u

n
01 in E1 by E1[m, n]. The identitiesE1[2, 0] = 0 andE1[1, 0] = 0

give respectivelyF1 = 3G1QxQ
−1
u andF2 = 3G1Q

2
xQ
−2
u , which from (B.8) enablesH to

be written as

H = G1(x, t, u)(u10+G)3+G2(x, t, u) (B.11)

where

G = QxQ
−1
u . (B.12)

Also E1[0, 3] = 0, E1[3, 0] = 0 andE1[0, 0] = 0 give respectively

G′2 = (QuRuu − RuQuu)Q
−3
u (B.13)

G′1 = G1P
5
x J
−2 (B.14)

G2 = P−1
x Q−3

u J (Q
3
u(QtRtt −QttRt )−Q3

t (QuRuu −QuuRu)). (B.15)
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Finally we encounter two restrictions on the forms ofQ(x, t, u) andR(x, t, u) implied
by E1[0, 2] = 0 andE1[0, 1] = 0. These equations may both be integrated with respect to
u and lead to

QtRu −QuRt = (A
1
2
t Qu)

3
2 (B.16)

QtQ
−1
u = 1

2A
−1
t Attu+ A

− 1
2

t Bt (B.17)

whereA(x, t) andB(x, t) are arbitrary functions (suitably differentiable). The contrived
form of the appearance ofA andB in (B.16) and (B.17) is so that the general solution of
(B.16) and (B.17) takes the simple form

Q = f (ξ) R = g(ξ)− Af ′(ξ) 1
2 (B.18)

where

ξ = A
1
2
t u+ B (B.19)

andf andg are general.
Incorporating these forms ofQ andR into the expressions forG′,G′1,G

′
2,G, G2 given

by (B.8), (B.14), (B.13), (B.12) and (B.15) respectively leads directly to the conditions
stated in theorem 4.4c (c). Under these conditionsE1 is identically zero and the stated
transformation is achieved. �
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